Functions Determined by the Lyapunov Exponents of Families of Linear Differential Systems Continuously Depending on the Parameter Uniformly on the Half-Line
- Авторы: Bykov V.V.1
-
Учреждения:
- Lomonosov Moscow State University
- Выпуск: Том 53, № 12 (2017)
- Страницы: 1529-1542
- Раздел: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154636
- DOI: https://doi.org/10.1134/S0012266117120011
- ID: 154636
Цитировать
Аннотация
For families of n-dimensional linear differential systems (n ≥ 2) whose dependence on a parameter ranging in a metric space is continuous in the sense of the uniform topology on the half-line, we obtain a complete description of the ith Lyapunov exponent as a function of the parameter for each i = 1,..., n. As a corollary, we give a complete description of the Lebesgue sets and (in the case of a complete separable parameter space) the range of an individual Lyapunov exponent of such a family.
Об авторах
V. Bykov
Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: vvbykov@gmail.com
Россия, Moscow, 119991
Дополнительные файлы
