Functions Determined by the Lyapunov Exponents of Families of Linear Differential Systems Continuously Depending on the Parameter Uniformly on the Half-Line


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

For families of n-dimensional linear differential systems (n ≥ 2) whose dependence on a parameter ranging in a metric space is continuous in the sense of the uniform topology on the half-line, we obtain a complete description of the ith Lyapunov exponent as a function of the parameter for each i = 1,..., n. As a corollary, we give a complete description of the Lebesgue sets and (in the case of a complete separable parameter space) the range of an individual Lyapunov exponent of such a family.

Об авторах

V. Bykov

Lomonosov Moscow State University

Автор, ответственный за переписку.
Email: vvbykov@gmail.com
Россия, Moscow, 119991

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).