🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Functions Determined by the Lyapunov Exponents of Families of Linear Differential Systems Continuously Depending on the Parameter Uniformly on the Half-Line


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For families of n-dimensional linear differential systems (n ≥ 2) whose dependence on a parameter ranging in a metric space is continuous in the sense of the uniform topology on the half-line, we obtain a complete description of the ith Lyapunov exponent as a function of the parameter for each i = 1,..., n. As a corollary, we give a complete description of the Lebesgue sets and (in the case of a complete separable parameter space) the range of an individual Lyapunov exponent of such a family.

About the authors

V. V. Bykov

Lomonosov Moscow State University

Author for correspondence.
Email: vvbykov@gmail.com
Russian Federation, Moscow, 119991

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.