On the Asymptotics of Eigenvalues of a Fourth-Order Differential Operator with Matrix Coefficients


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We study a fourth-order differential operator with matrix coefficients whose domain is determined by the Dirichlet boundary conditions. An asymptotics of the weighted average of the eigenvalues of this operator is obtained in the general case. As a consequence of this result, we present the asymptotics of the eigenvalues in several special cases. The obtained results significantly improve the already known asymptotic formulas for the eigenvalues of a one-dimensional fourth-order differential operator.

Об авторах

I. Braeutigam

Northern (Arctic) Federal University

Автор, ответственный за переписку.
Email: irinadolgih@rambler.ru
Россия, Arkhangelsk, 163002

D. Polyakov

Southern Mathematical Institute (Branch of Vladikavkaz Scientific Center of Russian Academy of Sciences)

Email: irinadolgih@rambler.ru
Россия, Vladikavkaz, 362027

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).