On the Asymptotics of Eigenvalues of a Fourth-Order Differential Operator with Matrix Coefficients
- Авторы: Braeutigam I.N.1, Polyakov D.M.2
-
Учреждения:
- Northern (Arctic) Federal University
- Southern Mathematical Institute (Branch of Vladikavkaz Scientific Center of Russian Academy of Sciences)
- Выпуск: Том 54, № 4 (2018)
- Страницы: 450-467
- Раздел: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154726
- DOI: https://doi.org/10.1134/S0012266118040031
- ID: 154726
Цитировать
Аннотация
We study a fourth-order differential operator with matrix coefficients whose domain is determined by the Dirichlet boundary conditions. An asymptotics of the weighted average of the eigenvalues of this operator is obtained in the general case. As a consequence of this result, we present the asymptotics of the eigenvalues in several special cases. The obtained results significantly improve the already known asymptotic formulas for the eigenvalues of a one-dimensional fourth-order differential operator.
Об авторах
I. Braeutigam
Northern (Arctic) Federal University
Автор, ответственный за переписку.
Email: irinadolgih@rambler.ru
Россия, Arkhangelsk, 163002
D. Polyakov
Southern Mathematical Institute (Branch of Vladikavkaz Scientific Center of Russian Academy of Sciences)
Email: irinadolgih@rambler.ru
Россия, Vladikavkaz, 362027
Дополнительные файлы
