Well-Posed Solvability and the Representation of Solutions of Integro-Differential Equations Arising in Viscoelasticity


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

For abstract integro-differential equations with unbounded operator coefficients in a Hilbert space, we study the well-posed solvability of initial problems and carry out spectral analysis of the operator functions that are symbols of these equations. This allows us to represent the strong solutions of these equations as series in exponentials corresponding to points of the spectrum of operator functions. The equations under study are the abstract form of linear integro-partial differential equations arising in viscoelasticity and several other important applications.

Об авторах

V. Vlasov

Lomonosov Moscow State University

Автор, ответственный за переписку.
Email: vikmont@yandex.ru
Россия, Moscow, 119991

N. Rautian

Lomonosov Moscow State University

Автор, ответственный за переписку.
Email: nrautian@mail.ru
Россия, Moscow, 119991

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Inc., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).