Well-Posed Solvability and the Representation of Solutions of Integro-Differential Equations Arising in Viscoelasticity
- Авторы: Vlasov V.V.1, Rautian N.A.1
-
Учреждения:
- Lomonosov Moscow State University
- Выпуск: Том 55, № 4 (2019)
- Страницы: 561-574
- Раздел: Integral Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/155005
- DOI: https://doi.org/10.1134/S0012266119040141
- ID: 155005
Цитировать
Аннотация
For abstract integro-differential equations with unbounded operator coefficients in a Hilbert space, we study the well-posed solvability of initial problems and carry out spectral analysis of the operator functions that are symbols of these equations. This allows us to represent the strong solutions of these equations as series in exponentials corresponding to points of the spectrum of operator functions. The equations under study are the abstract form of linear integro-partial differential equations arising in viscoelasticity and several other important applications.
Об авторах
V. Vlasov
Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: vikmont@yandex.ru
Россия, Moscow, 119991
N. Rautian
Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: nrautian@mail.ru
Россия, Moscow, 119991
Дополнительные файлы
