Complete Description of the Exponential Stability Index for Linear Parametric Systems as a Function of the Parameter
- Авторы: Barabanov E.A.1, Bykov V.V.2, Karpuk M.V.1
-
Учреждения:
- Institute of Mathematics
- Lomonosov Moscow State University
- Выпуск: Том 55, № 10 (2019)
- Страницы: 1263-1274
- Раздел: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/155149
- DOI: https://doi.org/10.1134/S001226611910001X
- ID: 155149
Цитировать
Аннотация
For parametric families of n-dimensional linear differential systems on the time semiaxis with parameter varying in a metric space, we consider two functions of the parameter defined as the dimension of the subspace of solutions that have the characteristic exponent that, respectively, is less than or does not exceed a given real number. A complete description is derived both for the functions themselves and for the vector function composed of them, for the families of systems continuous in one of the two topologies: uniform or compact-open. In addition, the Lebesgue sets and the sets of points of upper and lower semicontinuity are described for the indicated functions.
Об авторах
E. Barabanov
Institute of Mathematics
Автор, ответственный за переписку.
Email: bar@im.bas-net.by
Белоруссия, Minsk, 220072
V. Bykov
Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: vvbykov@gmail.com
Россия, Moscow, 119991
M. Karpuk
Institute of Mathematics
Автор, ответственный за переписку.
Email: M.vasilitch@gmail.com
Белоруссия, Minsk, 220072
Дополнительные файлы
