Lyapunov Irregularity Coefficient as a Function of the Parameter for Families of Linear Differential Systems Whose Dependence on the Parameter Is Continuous Uniformly on the Time Half-Line
- Авторы: Barabanov E.A.1, Bykov V.V.2
-
Учреждения:
- Institute of Mathematics
- Lomonosov Moscow State University
- Выпуск: Том 55, № 12 (2019)
- Страницы: 1531-1543
- Раздел: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/155278
- DOI: https://doi.org/10.1134/S0012266119120012
- ID: 155278
Цитировать
Аннотация
We consider families of n-dimensional (n ≥ 2) linear differential systems on the time half-line with parameter belonging to a metric space. We obtain a complete description of the Lyapunov irregularity coefficient as a function of the parameter for families whose dependence on the parameter is continuous in the sense of uniform convergence on the time half-line. As a corollary, we completely describe the parametric dependence of the Lyapunov irregularity coefficient of a regular linear system with a linear parametric perturbation decaying at infinity uniformly with respect to the parameter.
Об авторах
E. Barabanov
Institute of Mathematics
Автор, ответственный за переписку.
Email: bar@im.bas-net.by
Белоруссия, Minsk, 220072
V. Bykov
Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: vvbykov@gmail.com
Россия, Moscow, 119991
Дополнительные файлы
