Lyapunov Irregularity Coefficient as a Function of the Parameter for Families of Linear Differential Systems Whose Dependence on the Parameter Is Continuous Uniformly on the Time Half-Line


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider families of n-dimensional (n ≥ 2) linear differential systems on the time half-line with parameter belonging to a metric space. We obtain a complete description of the Lyapunov irregularity coefficient as a function of the parameter for families whose dependence on the parameter is continuous in the sense of uniform convergence on the time half-line. As a corollary, we completely describe the parametric dependence of the Lyapunov irregularity coefficient of a regular linear system with a linear parametric perturbation decaying at infinity uniformly with respect to the parameter.

作者简介

E. Barabanov

Institute of Mathematics

编辑信件的主要联系方式.
Email: bar@im.bas-net.by
白俄罗斯, Minsk, 220072

V. Bykov

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: vvbykov@gmail.com
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019