Inverse problem with nonlocal observation of finding the coefficient multiplying ut in the parabolic equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the inverse problem of the reconstruction of the coefficient ϱ(x, t) = ϱ0(x, t) + r(x) multiplying ut in a nonstationary parabolic equation. Here ϱ0(x, t) ≥ ϱ0 > 0 is a given function, and r(x) ≥ 0 is an unknown function of the class L(Ω). In addition to the initial and boundary conditions (the data of the direct problem), we pose the problem of nonlocal observation in the form ∫0Tu(x, t) (t) = χ(x) with a known measure (t) and a function χ(x). We separately consider the case (t) = ω(t)dt of integral observation with a smooth function ω(t). We obtain sufficient conditions for the existence and uniqueness of the solution of the inverse problem, which have the form of ready-to-verify inequalities. We suggest an iterative procedure for finding the solution and prove its convergence. Examples of particular inverse problems for which the assumptions of our theorems hold are presented.

作者简介

A. Kostin

National Research Nuclear University “Moscow Engineering Physics Institute”

编辑信件的主要联系方式.
Email: abkostin@yandex.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016