Singularly Perturbed Parabolic Problems with Multidimensional Boundary Layers
- 作者: Omuraliev A.S.1, Imash kyzy M.1
-
隶属关系:
- Kyrgyz Turkish Manas University
- 期: 卷 53, 编号 12 (2017)
- 页面: 1616-1630
- 栏目: Partial Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/154649
- DOI: https://doi.org/10.1134/S0012266117120096
- ID: 154649
如何引用文章
详细
The first boundary value problem for a multidimensional parabolic differential equation with a small parameter ε multiplying all derivatives is studied. A complete (i.e., of any order with respect to the parameter) regularized asymptotics of the solution is constructed, which contains a multidimensional boundary layer function that is bounded for x = (x1, x2) = 0 and tends to zero as ε → +0 for x ≠ 0. In addition, it contains corner boundary layer functions described by the product of a boundary layer function of the exponential type by a multidimensional parabolic boundary layer function.
作者简介
A. Omuraliev
Kyrgyz Turkish Manas University
编辑信件的主要联系方式.
Email: asan.omuraliev@mail.ru
吉尔吉斯斯坦, Bishkek, 720044
M. Imash kyzy
Kyrgyz Turkish Manas University
Email: asan.omuraliev@mail.ru
吉尔吉斯斯坦, Bishkek, 720044
补充文件
