Traces of Higher Negative Orders for a String with a Singular Weight


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the linear operator pencil A(λ) = L−λV, λ ∈ ℂ, where L is the Sturm–Liouville operator with potential q(x) and V is the operator of multiplication by the weight ρ(x). The potential and the weight are assumed to belong to the space W2−1[0, π]. For the pencil A(λ), we seek formulas for the traces of higher negative orders, i.e., for the sums \(\sum\nolimits_{n = 1}^\infty {\lambda _n^{ - p}} \), p ≥ 2, where λn, n ∈ ℕ, is the sequence of eigenvalues of the pencil numbered in nondescending order of absolute values. Trace formulas in terms of the weight ρ(x) and the integral kernel of the operator L−1 are obtained, and the relationship between these formulas and the classical results about traces of integral operators is described. The theoretical results are illustrated by examples.

Sobre autores

A. Ivanov

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: andrew-ivanov95@yandex.ru
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018