Three-Level Schemes for the Advection Equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The advection equation, which is central to mathematical models in continuum mechanics, can be written in the symmetric form in which the advection operator is the half-sum of advection operators in the conservative (divergence) and nonconservative (characteristic) forms. In this case, the advection operator is skew-symmetric for any velocity vector. This fundamental property is preserved when using standard finite element spatial approximations in space. Various versions of two-level schemes for the advection equation have been studied earlier. In the present paper, unconditionally stable implicit three-level schemes of the second order of accuracy are considered for the advection equation. We also construct a class of schemes of the fourth order of accuracy, which deserves special attention.

作者简介

P. Vabishchevich

Nuclear Safety Institute of the Russian Academy of Sciences; Ammosov North-Eastern Federal University

编辑信件的主要联系方式.
Email: vabishchevich@gmail.com
俄罗斯联邦, Moscow, 115191; Yakutsk, 677000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019