Bifurcation of the Equilibrium of an Oscillator with a Velocity-Dependent Restoring Force under Periodic Perturbations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the bifurcation of an oscillator whose restoring force depends on the velocity of motion under periodic perturbations. Separation of variables is used to derive a bifurcation equation. To each positive root of this equation, there corresponds an invariant twodimensional torus (a closed trajectory in the case of a time-independent perturbation) shrinking to the equilibrium position as the small parameter tends to zero. The proofs use methods of the Krylov-Bogolyubov theory for the case of periodic perturbations or the implicit function theorem for the case of time-independent perturbations.

作者简介

Yu. Bibikov

St. Petersburg State University

编辑信件的主要联系方式.
Email: jy.bibikov@spbu.ru
俄罗斯联邦, St. Petersburg, 199034

V. Bukaty

St. Petersburg State University

编辑信件的主要联系方式.
Email: anna1918@mail.ru
俄罗斯联邦, St. Petersburg, 199034

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019