Bifurcation of the Equilibrium of an Oscillator with a Velocity-Dependent Restoring Force under Periodic Perturbations
- Авторы: Bibikov Y.N.1, Bukaty V.R.1
-
Учреждения:
- St. Petersburg State University
- Выпуск: Том 55, № 8 (2019)
- Страницы: 1011-1016
- Раздел: Ordinary Differential Equations
- URL: https://journal-vniispk.ru/0012-2661/article/view/155109
- DOI: https://doi.org/10.1134/S0012266119080020
- ID: 155109
Цитировать
Аннотация
We study the bifurcation of an oscillator whose restoring force depends on the velocity of motion under periodic perturbations. Separation of variables is used to derive a bifurcation equation. To each positive root of this equation, there corresponds an invariant twodimensional torus (a closed trajectory in the case of a time-independent perturbation) shrinking to the equilibrium position as the small parameter tends to zero. The proofs use methods of the Krylov-Bogolyubov theory for the case of periodic perturbations or the implicit function theorem for the case of time-independent perturbations.
Об авторах
Yu. Bibikov
St. Petersburg State University
Автор, ответственный за переписку.
Email: jy.bibikov@spbu.ru
Россия, St. Petersburg, 199034
V. Bukaty
St. Petersburg State University
Автор, ответственный за переписку.
Email: anna1918@mail.ru
Россия, St. Petersburg, 199034
Дополнительные файлы
