Analysis and Classification of Methods of Neural and Phase Logic for the Development of Parametric Identification Algorithms for Control Objects


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A general algorithm for identification of fibrous materials based on expert knowledge with an appropriate selection of the number and form of the membership functions of the fuzzy sets used in the model is determined. The basic methods of parametric identification of a control object is considered, the first of which is based on a structural model of the object while the second uses only a training sample.

作者简介

A. Polyakov

Kosygin Russian State University

Email: filimonova_em@mail.ru
俄罗斯联邦, Moscow

E. Filimonova

Kosygin Russian State University

编辑信件的主要联系方式.
Email: filimonova_em@mail.ru
俄罗斯联邦, Moscow

P. Mukhina

Kosygin Russian State University

Email: filimonova_em@mail.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018