The Effect of Termomechanical Treatment on the Low-Cyclic Fatigue Behavior in an Al–Cu–Mg–Ag Alloy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The mechanical behavior under monotonic and cyclic loadings has been studied in an Al–4.5Cu–0.56Mg–0.77Ag–0.42Mn–0.12Ti–0.05V–0.02Fe (wt %) alloy subjected to thermomechanical treatment (TMT), including a solution heat treatment, quenching in water, uniaxial tension with a plastic strain of 3%, and
peak aging at 190°C (state T83 according to the classification of the Aluminum Association). The T83-ed alloy demonstrates the lowest tensile strength properties in comparison with T6 state (traditional aging) and TMT,
including rolling with a 40%-reduction (T840). Compared to T6 and T840 states, the lowest cyclic strength and cyclic strain hardening coefficients in the Ramberg-Osgood relationship was found to be in T83-ed alloy. To achieve long fatigue life, it is advisable to reduce to the minimum values the degree of intermediate plastic deformation required for straightening Al–Cu–Mg–Ag sheets after their buckling during high-temperature heating for quenching.

About the authors

M. R. Gazizov

Belgorod State National Research University (NRU “BelSU”)

Email: gazizov@bsu.edu.ru
Belgorod, 308015 Russia

M. Yu. Gazizova

Belgorod State National Research University (NRU “BelSU”)

Email: gazizov@bsu.edu.ru
Belgorod, 308015 Russia

I. S. Zuiko

Belgorod State National Research University (NRU “BelSU”)

Email: gazizov@bsu.edu.ru
Belgorod, 308015 Russia

R. O. Kaibyshev

Belgorod State National Research University (NRU “BelSU”)

Author for correspondence.
Email: gazizov@bsu.edu.ru
Belgorod, 308015 Russia

References

  1. Polmear I.J., Pons G., Barbaux Y., Octor H., Sanchez C., Morton A.J., Borbidge W.E., Rogers S. After Concorde: Evaluation of creep resistant Al–Cu–Mg–Ag alloys // Mater. Sci. Technol. 1999. V. 15. P. 861–868.
  2. Gazizov M., Kaibyshev R. Low-cyclic fatigue behaviour of an Al–Cu–Mg–Ag alloy under T6 and T840 conditions // Mater. Sci. Technol. 2017. V. 33. P. 688–698.
  3. Газизов М.Р., Кайбышев Р.О. Кинетика и механизм разрушения при циклическом нагружении Al–Cu–Mg–Ag сплава //ФММ. 2016. Т. 117. № 7. С. 748–757.
  4. Gazizov M., Zuiko I., Kaibyshev R. Effect of cold plastic deformation prior to ageing on creep resistance of an Al–Cu–Mg–Ag alloy // Mater. Sci. Forum. 2014. V. 794–796. P. 278–283.
  5. Gazizov M., Kaibyshev R. Effect of pre-straining on the aging behavior and mechanical properties of an Al–Cu–Mg–Ag alloy // Mater. Sci. Eng. A. 2015. V. 625. P. 119–130.
  6. Auld J.H. Structure of metastable precipitate in some Al–Cu–Mg–Ag alloys // Mater. Sci. Technol. 1986. V. 2. P. 784–787.
  7. Kerry S., Scott V.D. Structure and orientation relationship of precipitates formed in Al–Cu–Mg–Ag alloys // Met. Sci. 1984. V. 18. P. 289–294.
  8. Muddle B.C., Polmear I.J. The precipitation Ω phase in Al–Cu–Mg–Ag alloys // Acta Metall. 1989. V. 37. P. 777–789.
  9. Abis S., Mengucci P., Riontino G. A study of the high-temperature ageing of Al–Cu–Mg–Ag alloy 201 // Philos. Mag. 1993. V. B67. № 4. P. 465–484.
  10. Ringer S.P., Yeung W., Muddle B.C., Polmear I.J. Precipitate stability in Al–Cu–Mg–Ag alloys aged at high temperatures // Acta Metall. Mater. 1994. V. 42. P. 1715–1725.
  11. Wang S.C., Starink M.J. Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys // Int. Mater. Rev. 2005. V. 50. P. 193–215.
  12. Зуйко И.С., Газизов М.Р., Кайбышев Р.О. Влияние термомеханической обработки на микроструктуру, фазовый состав и механические свойства сплава системы Al–Cu–Mn–Mg–Zr // ФММ. 2016. V. 117. № 9. С. 938–951.
  13. Garg A., Howe J.M. Convergent-beam electron diffraction analysis of the Ω phase in an Al–4.0Cu–0.5Mg–0.5Ag alloy // Acta Metall. Mater. 1999. V. 39. P. 1939–1946.
  14. Hutchinson C.R., Fan X., Pennycook S.J., Shiflet G.J. On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag alloys // Acta Mater. 2001. V. 49. P. 2827–2841.
  15. Knowles K.M., Stobbs W.M. The structure of {111} age-hardening precipitates in Al–Cu–Mg–Ag alloys // Acta Crystallogr. 1988. V. 44. P. 207–227.
  16. Kang S.J., Zuo J.-M., Han H.N., Kim M. Ab initio study of growth mechanism of omega precipitates in Al–Cu–Mg–Ag alloy and similar systems // J. Alloys Compd. 2018. V. 737. P. 207–212.
  17. Kang S.J., Kim Y.W., Kim M., Zuo J.M. Determination of interfacial atomic structure, misfits and energetics of Ω phase in Al–Cu–Mg–Ag alloy // Acta Mater. 2014. V. 81. P. 501–511.
  18. Gazizov M.R., Boev A.O., Marioara C.D., Holmestad R., Aksyonov D.A., Gazizova M.Yu., Kaibyshev R.O. Precipitate/matrix incompatibilities related to the {111}Al Ω plates in an Al–Cu–Mg–Ag alloy // Mater. Charact. 2021. V. 182. P. 111586.
  19. Fonda R.W., Cassada W.A., Shiflet G.J.J. Accommodation of the misfit strain surrounding {III} precipitates (Ω) in Al–Cu–Mg–(Ag) // Acta Metall. Mater. 1992. V. 40. P. 2539–2546.
  20. Gazizov M.R., Boev A.O., Marioara C.D., Holmestad R., Gazizova M.Y., Kaibyshev R.O. Edge interfaces of the Ω plates in a peak-aged Al–Cu–Mg–Ag alloy // Mater. Charact. 2022. V. 185. P. 111747.
  21. Gazizov M., Kaibyshev R. High cyclic fatigue performance of Al–Cu–Mg–Ag alloy under T6 and T840 conditions // Trans. Nonferrous Met. Soc. China. 2017. V. 27. P. 1215–1223.
  22. Золоторевский В.С. Механические свойства металлов. М.: МИСИС, 1998. 400 с.
  23. Niesłony A., Dsoki C., Kaufmann H., Krug P. New method for evaluation of the Manson-Coffin-Basquin and Ramberg–Osgood equations with respect to compatibility // Int. J. Fatigue. 2008. V. 30. P. 1967–1977.
  24. Lapovok R., Loader C., Torre F.H.D., Semiatin S.L. Microstructure evolution and fatigue behavior of 2124 aluminum processed by ECAE with back pressure // Mater. Sci. Eng. 2006. V. A425. P. 36–46.
  25. Williams D.B., Carter B.C. Transmission Electron Microscopy: A Textbook for Materials Science. Springer, New York, 2009. 775 p.
  26. Gazizov M.R., Belyakov A.N., Holmestad R., Gazizova M.Yu., Krasnikov V.S., Bezborodova P.A., Kaibyshev R.O. The deformation behavior of the {111}Al plates in an Al–Cu–Mg–Ag alloy // Acta Mater. 2023. V. 243. P. 118534.
  27. Gazizov M., Kaibyshev R., Precipitation structure and strengthening mechanisms in an Al–Cu–Mg–Ag alloy // Mater. Sci. Eng. 2017. V. A702. P. 29–40.
  28. Kamikawa N., Huang X., Tsuji N., Hansen N. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed // Acta Mater. 2009. V. 57. P. 4198–4208.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (922KB)
3.

Download (2MB)
4.

Download (1MB)
5.

Download (421KB)
6.

Download (77KB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».