Temperature dependence of the magnetic susceptibility of nanocomposites with particles of lithium-cobalt and lithium-cobalt-nickel orthophosphates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The magnetic susceptibility of nanocomposites with particles of lithium-cobalt and lithium-cobalt-nickel orthophosphates in constant and alternating magnetic fields has been studied. Temperature dependences of susceptibility as well as magnetization curves are measured. It is shown that the temperature dependence of a composite with LiNi0.5Co0.5PO4 particles has one maximum at a temperature of TN = 13.5 K, and a state with an incommensurable non-collinear magnetic ordering is not realized. In contrast, a nanocomposite with LiCoPO4 particles has two maxima at temperatures TN = 31.1 K and Tmax= 21.9 K. Below the temperature TN, antiferromagnetic ordering is realized in both nanocomposites.

About the authors

A. B. Rinkevich

M.N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: rin@imp.uran.ru
Ekaterinburg, 620108 Russia

O. V. Nemytova

M.N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Ekaterinburg, 620108 Russia

D. V. Perov

M.N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Ekaterinburg, 620108 Russia

M. S. Stenina

M.N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Ekaterinburg, 620108 Russia

References

  1. Toft-Petersen R., Reehuis M., Jensen T.B.S., Andersen N.H., Li J., Le M.D., Laver M., Niedermayer C., Klemke B., Lefmann K., Vaknin D. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4 // Phys. Rev. B. 2015. V. 92. No. 2. Р. 024404.
  2. Wang K.F., Liu J.-M., Ren Z.F. Multiferroicity: the coupling between magnetic and polarization orders // Adv. Phys. 2009. V. 58. No. 4. P. 321–448.
  3. Handbook of magnetic materials. Volume 19 / Buschow K.H.J. (Ed.). Oxford: Elsevier, 2011. 436 p.
  4. Rivera J.-P. The linear magnetoelectric effect in LiCoPO4 revisited // Ferroelectrics. 1994. V. 161. No. 1. P. 147–164.
  5. Пятаков А.П., Звездин А.К. Магнитоэлектрические материалы и мультиферроики // УФН. 2012. Т. 182. № 6. С. 593–620.
  6. Urusova N., Semkin M., Kratochvilova M., Barykina J., Volegov A., Park J.-G., Lee S., Pirogov A. Analysis of migration maps and features of magnetic properties of LiNi0.9M0.1PO4 (M = Co, Mn) single crystals // J. Alloys Compd. 2019. V. 781. P. 571–581.
  7. Wersing W. Microwave ceramics for resonators and filters // Curr. Opin. Solid St. Mat. Sci. 1996. V. 1. No. 5. P. 715–731.
  8. Kharchenko Yu.N., Kharchenko N.F., Baran M., Szymczak R. Weak ferromagnetism and an intermediate incommensurate antiferromagnetic phase in LiNiPO4 // Low Temp. Phys. 2003. V. 29. No. 7. P. 579–583.
  9. Lewińska S., Szewczyk A., Gutowska M.U., Wieckowski J., Puzniak R., Diduszko R., Reszka A., Kowalski B.J., Kharchenko Yu., Molenda J. Magnetic susceptibility and phase transitions in LiNiPO4 // Phys. Rev. B. 2019. V. 99. No. 21. P. 214440.
  10. Kharchenko N.F., Kharchenko Yu.N., Szymczak R., Baran M., Schmid H. Weak ferromagnetism in the antiferromagnetic magnetoelectric crystal LiCoPO4 // Low Temp. Phys. 2001. V. 27. No. 9. P. 895–898.
  11. Kharchenko N.F., Desnenko V.A., Kharchenko Yu.N., Szymczak R., Baran M. Nonmonotonic temperature dependence of the spontaneous magnetization of the antiferromagnetic crystal LiCoPO4 // Low Temp. Phys. 2002. V. 28. No. 8. P. 646–652.
  12. Khrustalyov V.M., Savytsky V.M., Kharchenko M.F. Magnetoelectric effect in antiferromagnetic LiCoPO4 in pulsed magnetic fields // Low Temp. Phys. 2016. V. 42. No. 4. P. 280–285.
  13. Toft-Petersen R., Fogh E., Kihara T., Jensen J., Fritsch K., Lee J., Granroth G.E., Stone M.B., Vaknin D., Nojiri H., Christensen N.B. Field-induced reentrant magnetoelectric phase in LiNiPO4 // Phys. Rev. B. 2017. V. 95. No. 6. Р. 064421.
  14. Kharchenko N.F., Khrustalev V.M., Savitskiĭ V.N. Magnetic field induced spin reorientation in the strongly anisotropic antiferromagnetic crystal LiCoPO4 // Low Temp. Phys. 2010. V. 36. No. 6. P. 558–564.
  15. Fogh E., Toft-Petersen R., Ressouche E., Niedermayer C., Holm S.L., Bartkowiak M., Prokhnenko O., Sloth S., Isaksen F.W., Vaknin D., Christensen N.B. Magnetic order, hysteresis, and phase coexistence in magnetoelectric LiCoPO4 // Phys. Rev. B. 2017. V. 96. No. 10. P. 104420.
  16. Semkin M.A., Urusova N.V., Lee S., Kalinkin M.O., Kuznetsov D.K., Kulesh N.A., Neznakhin D.S., Kellerman D.G., Pirogov A.N. Structure and magnetic properties of LiNi1-xCoxPO4 magnetoelectrics with x = (0, 0.1, and 0.2) // J. Phys. Conf. Ser. 2019. V. 1389. P. 012050.
  17. Туров Е.А., Колчанов А.В., Меньшенин В.В., Мирсаев И.Ф., Николаев В.В. Симметрия и физические свойства антиферромагнетиков. М.: Физматлит, 2001. 560 с.
  18. Rinkevich A.B., Burkhanov A.M., Samoilovich M.I., Belyanin A.F., Kleshcheva S.M., Kuznetsov E.A. Three-dimensional nanocomposite metal dielectric materials on the basis of opal matrices // Russ. J. Gen. Chem. 2013. V. 83. No. 11. P. 2148–2158.
  19. Самойлович М.И., Ринкевич А.Б., Бовтун В., Белянин А.Ф., Кемпа М., Нужный Д., Цветков М.Ю., Клещева С.М. Оптические, магнитные и диэлектрические свойства опаловых матриц с заполнением межсферических нанополостей кристал-лическими мультиферроиками, пьезо-электрическими и сегнетоэлектрическими материалами // Рос. Хим. Журнал (Журн. Рос. Хим. Об-ва им. Д.И. Менделеева). 2012. Т. 56. №№ 1–2. С. 11–25.
  20. Fogh E., Zaharko O., Schefer J., Niedermayer C., Holm-Dahlin S., Sørensen M.K., Kristensen A.B., Andersen N.H., Vaknin D., Christensen N.B., Toft-Petersen R. Dzyaloshinskii-Moriya interaction and the magnetic ground state in magnetoelectric LiCoPO4 // Phys. Rev. B. 2019. V. 99. No. 10. P. 104421.
  21. Vaknin D., Zarestky J.L., Rivera J.-P., Schmid H. Commensurate-incommensurate magnetic phase transition in magnetoelectric single crystal LiNiPO4 // Phys. Rev. Lett. 2004. V. 92. No. 20. P. 207201.
  22. Rissouli K., Benkhouja K., Bettach M., Sadel A., Zahir M., Derrory A., Drillon M. Crystallochemical and magnetic studies of LiMi1−xMx'PO4 (M, M' = Mn, Co, Ni; O≤ x≤ 1) // Ann. Chim.: Sci. Mater. 1998. V. 23. No. 1–2. P. 85–88.
  23. Szewczyk A., Gutowska M.U., Wieckowski J., Wisniewski A., Puzniak R., Diduszko R. Phase transitions in single-crystalline magnetoelectric LiCoPO4 // Phys. Rev. B. 2011. V. 84. No. 10. P. 104419.
  24. Cole K.S., Cole R.H. Dispersion and absorption in dielectrics. I. Alternating current // J. Chem. Phys. 1941. V. 9. No. 4. P. 341–351.
  25. Rinkevich A.B., Nemytova O.V., Perov D.V. Magnetic susceptibility of a nanocomposite based on an opal matrix with Yb2Ti2O7 particles // J. Compos. Sci. 2023. V. 7. No. 3. P. 97.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».