Electrical resistivity and optical properties of Co2−XMn1+XAl (x = 0, 0.25, 0.5, 0.75, 1) Heusler alloys
- Authors: Semiannikova A.A.1, Shreder E.I.1, Markin A.A.1, Perevozchikova Y.A.1, Terentev P.B.1, Marchenkova E.B.1, Marchenkov V.V.1
-
Affiliations:
- M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Issue: Vol 126, No 4 (2025)
- Pages: 450-455
- Section: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://journal-vniispk.ru/0015-3230/article/view/306393
- DOI: https://doi.org/10.31857/S0015323025040057
- EDN: https://elibrary.ru/jmllve
- ID: 306393
Cite item
Abstract
About the authors
A. A. Semiannikova
M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: semiannikova@imp.uran.ru
Ekaterinburg, 620108 Russia
E. I. Shreder
M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesEkaterinburg, 620108 Russia
A. A. Markin
M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesEkaterinburg, 620108 Russia
Y. A. Perevozchikova
M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesEkaterinburg, 620108 Russia
P. B. Terentev
M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesEkaterinburg, 620108 Russia
E. B. Marchenkova
M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesEkaterinburg, 620108 Russia
V. V. Marchenkov
M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: march@imp.uran.ru
Ekaterinburg, 620108 Russia
References
- Graf T., Felser C., Parkin S.S.P. Simple rules for the understanding of Heusler compounds // Prog. Solid State Chem. 2011. V. 39. P. 1–50.
- Felser C., Hirohata A. Heusler Alloys: Properties, Growth, Applications. Springer International Publishing, 2016. 492 p.
- Tavares S., Yang K., Meyers M.A. Heusler alloys: Past, properties, new alloys, and prospects // Prog. Mater. Sci. 2023. V. 132. P. 101017.
- De Groot R.A., Mueller F.M., van Engen P.G., Buschow K.H.J. New class of materials: half-metallic ferromagnets // Phys. Rev. Lett. 1983. V. 50. P. 2024–2027.
- Ирхин В.Ю., Кацнельсон М.И. Полуметаллические ферромагнетики // УФН. 1994. Т. 164. № 7. С. 705–724.
- Wang X.L. Proposal for a new class of materials: spin gapless semiconductors // Phys. Rev. Lett. 2008. V. 100. P. 156404.
- Wang X.L. Dirac spin-gapless semiconductors: promising platforms for massless and dissipationless spintronics and new (quantum) anomalous spin Hall effects // Natl. Sci. Rev. 2017. V. 4. P. 252–257.
- Manna K., Sun Y., Muechler L., Kübler J., Felser C. Heusler, Weyl and Berry // Nat. Rev. Mater. 2018. V. 3. P. 244–256.
- Zhong M., Vu N.T.T., Zhai W., Soh J.R., Liu Y., Wu J., Suwardi A., Liu H., Chang G., Loh K.P., Gao W., Qiu C.-W., Yang J.K.W., Dong Z. Weyl Semimetals: from Principles, Materials to Applications / ArXiv. 2025. arXiv:2504.01300.
- Wang X., Cheng Z., Zhang G., Yuan H., Chen H., Wang X.-L. Spin-gapless semiconductors for future spintronics and electronics // Phys. Rep. 2020. V. 888. P. 1–57.
- Sharma S., Gupta D.C. Systematic investigation of structural, magneto-electronic, mechanical, thermophysical, optical and thermoelectric properties of Hf2VZ (Z = Ga, In, Tl) inverse Heusler alloy for spintronics applications // Sci. Rep. 2024. V. 14. P. 28542.
- Katsnelson M.I., Irkhin V.Yu., Chioncel L., Lichtenstein A.I., de Groot R.A. Half-metallic ferromagnets: from band structure to many-body effects // Rev. Mod. Phys. 2008. V. 80. P. 315–378.
- Galanakis I., Dederichs P.H. Half-Metallicity and Slater–Pauling Behavior in the Ferromagnetic Heusler Alloys / Chapter in: Galanakis I., Dederichs P. (eds). Half-metallic Alloys. Lecture Notes in Physics. Berlin–Heidelberg: Springer, 2005. V. 676. P. 1–39.
- Марченков В.В., Ирхин В.Ю. Полуметаллические ферромагнетики, спиновые бесщелевые полупроводники и топологические полуметаллы на основе сплавов Гейслера: теория и эксперимент // ФММ. 2021. Т. 122. С. 1221–1246.
- Marchenkov V.V., Irkhin V.Yu., Semiannikova A.A. Unusual Kinetic Properties of Usual Heusler Alloys // J. Supercond. Nov. Magn. 2022. V. 35. P. 2153–2168.
- Ouardi S., Fecher G.H., Felser C., Kübler J. Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl // Phys. Rev. Lett. 2013. V. 110. P. 100401.
- Ouardi S., Fecher G.H., Felser C., Kübler J. Erratum: Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl // Phys. Rev. Lett. 2019. V. 122. P. 059901.
- Marchenkov V.V., Irkhin V.Yu. Magnetic States and Electronic Properties of Manganese-Based Intermetallic Compounds Mn2YAl and Mn3Z (Y = V, Cr, Fe, Co, Ni; Z = Al, Ge, Sn, Si, Pt) // Materials. 2023. V. 16. P. 6351–6370.
- Xu S.-Y., Belopolski I., Alidoust N., Neupane M., Bian G., Zhang C., Sankar R., Chang G., Yuan Z., Lee C.-C., Huang S.-M., Zheng H., Ma J., Sanchez D.S., Wang B., Bansil A., Chou F., Shibayev P.P., Lin H., Jia S., Zahid Hasan M. Discovery of a Weyl fermion semimetal and topological Fermi arcs // Science. 2015. V. 349. P. 613–617.
- Belopolski I., Manna K., Sanchez D.S., Chang G., Ernst B., Yin J., Zhang S.S., Cochran T., Shumiya N., Zheng H., Singh B., Bian G., Multer D., Litskevich M., Zhou X., Huang S.-M., Wang B., Chang T.-R., Xu S.-Y., Bansil A., Felser C., Lin H., Zahid Hasan M. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet // Science. 2019. V. 365. P. 1278–1281.
- Kübler J., Felser C. Weyl points in the ferromagnetic Heusler compound Co2MnAl // EPL. 2016. V. 114. P. 47005.
- Li P., Koo J., Ning W., Li J., Miao L., Min L., Zhu Y., Wang Y., Alem N., Liu C.-X., Mao Z., Yan B. Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl // Nat. Comm. 2020. V. 11. P. 3476.
- Marchenkov V.V., Weber H.W., Cherepanov A.N., Startsev V.E. Experimental verification and quantitative analysis of the temperature (phonon) breakdown phenomenon in the high-field magnetoresistivity of compensated metals // J. Low Temp. Phys. 1996. V. 102. P. 133–155.
- Шредер Е.И., Свяжин А.Д., Махнев А.А. Эволюция электронной структуры и оптических свойств сплавов Гейслера на основе железа // Оптика и спектроскопия. 2015. Т. 119. № 6. С. 960–965.
- Mooij J.H. Electrical conduction in concentrated disordered transition metal alloys // Phys. Stat. Sol. 1973. V. 17. P. 521–530.
- Семянникова А.А., Перевозчикова Ю.А., Коренистов П.С., Марченкова Е.Б., Королев А.В., Марченков В.В. Магнитные и электрические свойства соединений Гейслера Co2MnZ (Z = Al, Si, Ga, Ge, Sn) // ФММ. 2022. V. 123. № 7. P. 753–758.
- Соколов А.В. Оптические свойства металлов. М.: Физ.-мат. Лит., 1961. 464 с.
- Шредер Е.И., Лукоянов А.В., Мухачев Р.Д., Филанович А.Н., Даш Ш., Патра А.К., Васундхара М. Электронная структура и оптические свойства сплавов Гейслера Mn2–xFe1+xAl (x = –0.5, 0, 0.5, 1) // ФММ. 2023. Т. 124. № 3. С. 257–263.
- Шредер Е.И., Филанович А.Н., Чернов Е.Д., Лукоянов А.В., Марченков В.В., Сташкова Л.А. Электронная структура, термоэлектрические и оптические свойства сплавов Гейслера Mn2MeAl (Me = Ti, V, Cr) // ФММ. 2023. Т. 124. № 7. С. 608–615.
Supplementary files
