Extended Gelfand–Tsetlin graph, its q-boundary, and q-B-splines


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The boundary of the Gelfand–Tsetlin graph is an infinite-dimensional locally compact space whose points parameterize the extreme characters of the infinite-dimensional group U(∞). The problem of harmonic analysis on the group U(∞) leads to a continuous family of probability measures on the boundary—the so-called zw-measures. Recently Vadim Gorin and the author have begun to study a q-analogue of the zw-measures. It turned out that constructing them requires introducing a novel combinatorial object, the extended Gelfand–Tsetlin graph. In the present paper it is proved that the Markov kernels connected with the extended Gelfand–Tsetlin graph and its q-boundary possess the Feller property. This property is needed for constructing a Markov dynamics on the q-boundary. A connection with the B-splines and their q-analogues is also discussed.

About the authors

G. I. Olshanski

Institute for Information Transmission Problems, Russian Academy of Sciences; National Research University Higher School of Economics

Author for correspondence.
Email: olsh2007@gmail.com
Russian Federation, Moscow; Moscow

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Springer Science+Business Media New York