Invariant Subspaces for Commuting Operators on a Real Banach Space
- Autores: Lomonosov V.I.1, Shul’man V.S.2
-
Afiliações:
- Department of Mathematics, Kent State University
- Department of Higher Mathematics, Vologda State University
- Edição: Volume 52, Nº 1 (2018)
- Páginas: 53-56
- Seção: Brief Communications
- URL: https://journal-vniispk.ru/0016-2663/article/view/234402
- DOI: https://doi.org/10.1007/s10688-018-0207-6
- ID: 234402
Citar
Resumo
It is proved that the commutative algebra A of operators on a reflexive real Banach space has an invariant subspace if each operator T ∈ A satisfies the condition
\({\left\| {1 - \varepsilon {T^2}} \right\|_e} \leqslant 1 + o\left( \varepsilon \right)as\varepsilon \searrow 0,\)![]()
where ║ · ║e denotes the essential norm. This implies the existence of an invariant subspace for any commutative family of essentially self-adjoint operators on a real Hilbert space.Sobre autores
V. Lomonosov
Department of Mathematics, Kent State University
Autor responsável pela correspondência
Email: lomonoso@mcs.kent.edu
Estados Unidos da América, Kent
V. Shul’man
Department of Higher Mathematics, Vologda State University
Email: lomonoso@mcs.kent.edu
Rússia, Vologda
Arquivos suplementares
