The Index of a 1-Form on a Real Quotient Singularity
- Authors: Gusein-Zade S.M.1, Ebeling W.2
-
Affiliations:
- Faculty of Mechanics and Mathematics, Moscow State University
- Institut für Algebraische Geometrie, Leibnitz Universität Hannover
- Issue: Vol 52, No 2 (2018)
- Pages: 144-146
- Section: Article
- URL: https://journal-vniispk.ru/0016-2663/article/view/234465
- DOI: https://doi.org/10.1007/s10688-018-0220-9
- ID: 234465
Cite item
Abstract
Let G be a finite Abelian group acting (linearly) on space ℝn and, therefore, on its complexification ℂn, and let W be the real part of the quotient ℂn/G (in the general case, W ≠ ℝn/G). The index of an analytic 1-form on the space W is expressed in terms of the signature of the residue bilinear form on the G-invariant part of the quotient of the space of germs of n-forms on (ℝn, 0) by the subspace of forms divisible by the 1-form under consideration.
About the authors
S. M. Gusein-Zade
Faculty of Mechanics and Mathematics, Moscow State University
Author for correspondence.
Email: sabir@mccme.ru
Russian Federation, Moscow
W. Ebeling
Institut für Algebraische Geometrie, Leibnitz Universität Hannover
Email: sabir@mccme.ru
Germany, Hannover
Supplementary files
