On the Complex Conjugate Zeros of the Partial Theta Function


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We prove that (1) for any q ∈ (0, 1), all complex conjugate pairs of zeros of the partial theta function \(\theta (q,x): = \sum\nolimits_{j = 0}^\infty {{q^{j(j + 1)/2}}{x^j}}\) belong to the set {Re x ∈ (−5792.7,0), |Im x| < 132} ∪ {|x| < 18} and (2) for any q ∈ (−1,0), they belong to the rectangle {|Re x| < 364.2, |Im x| < 132}.

About the authors

V. P. Rostov

Université Côte d’Azur, CNRS, LJAD

Author for correspondence.
Email: vladimir.kostov@unice.fr
France, Nice

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature