On the Complex Conjugate Zeros of the Partial Theta Function
- Authors: Rostov V.P.1
-
Affiliations:
- Université Côte d’Azur, CNRS, LJAD
- Issue: Vol 53, No 2 (2019)
- Pages: 149-152
- Section: Brief Communication
- URL: https://journal-vniispk.ru/0016-2663/article/view/234593
- DOI: https://doi.org/10.1134/S0016266319020102
- ID: 234593
Cite item
Abstract
We prove that (1) for any q ∈ (0, 1), all complex conjugate pairs of zeros of the partial theta function \(\theta (q,x): = \sum\nolimits_{j = 0}^\infty {{q^{j(j + 1)/2}}{x^j}}\) belong to the set {Re x ∈ (−5792.7,0), |Im x| < 132} ∪ {|x| < 18} and (2) for any q ∈ (−1,0), they belong to the rectangle {|Re x| < 364.2, |Im x| < 132}.
About the authors
V. P. Rostov
Université Côte d’Azur, CNRS, LJAD
Author for correspondence.
Email: vladimir.kostov@unice.fr
France, Nice
Supplementary files
