Finitely Additive Measures on the Unstable Leaves of Anosov Diffeomorphisms


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We obtain a qualitative characterization of the convergence rate of the averages (with respect to the Margulis measure) of C2 functions over the iterations of domains in unstable manifolds of a topologically mixing C3 Anosov diffeomorphism with oriented invariant foliations. For this purpose, we extend the constructions of Margulis and Bufetov and introduce holonomy invariant families of finitely additive measures on unstable leaves and a Banach space in which holonomy invariant measures correspond to the (generalized) eigenfunctions of the transfer operator with biggest eigenvalues.

作者简介

D. Zubov

International Laboratory of Representation Theory and Mathematical Physics, National Research University Higher School of Economics

编辑信件的主要联系方式.
Email: dmitry.zubov.93@gmail.com
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019