On Homogenization for Non-Self-Adjoint Periodic Elliptic Operators on an Infinite Cylinder
- Autores: Senik N.N.1
-
Afiliações:
- St. Petersburg State University
- Edição: Volume 50, Nº 1 (2016)
- Páginas: 71-75
- Seção: Brief Communications
- URL: https://journal-vniispk.ru/0016-2663/article/view/234168
- DOI: https://doi.org/10.1007/s10688-016-0131-6
- ID: 234168
Citar
Resumo
We consider an operator Aε on L2(\({\mathbb{R}^{{d_1}}} \times {T^{{d_2}}}\)) (d1 is positive, while d2 can be zero) given by Aε = −div A(ε−1x1,x2)∇, where A is periodic in the first variable and smooth in a sense in the second. We present approximations for (Aε − μ)−1 and ∇(Aε − μ)−1 (with appropriate μ) in the operator norm when ε is small. We also provide estimates for the rates of approximation that are sharp with respect to the order.
Sobre autores
N. Senik
St. Petersburg State University
Autor responsável pela correspondência
Email: N.N.Senik@gmail.com
Rússia, St. Petersburg
Arquivos suplementares
