On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is shown that, for any compact set K ⊂ ℝn (n ⩾ 2) of positive Lebesgue measure and any bounded domain GK, there exists a function in the Hölder class C1,1(G) that is a solution of the minimal surface equation in G \ K and cannot be extended from G \ K to G as a solution of this equation.

Sobre autores

A. Pokrovskii

Institute of Mathematics, National Academy of Sciences of Ukraine

Autor responsável pela correspondência
Email: pokrovsk@imath.kiev.ua
Ucrânia, Kiev

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018