On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure
- Autores: Pokrovskii A.V.1
-
Afiliações:
- Institute of Mathematics, National Academy of Sciences of Ukraine
- Edição: Volume 52, Nº 1 (2018)
- Páginas: 62-65
- Seção: Brief Communications
- URL: https://journal-vniispk.ru/0016-2663/article/view/234409
- DOI: https://doi.org/10.1007/s10688-018-0209-4
- ID: 234409
Citar
Resumo
It is shown that, for any compact set K ⊂ ℝn (n ⩾ 2) of positive Lebesgue measure and any bounded domain G ⊃ K, there exists a function in the Hölder class C1,1(G) that is a solution of the minimal surface equation in G \ K and cannot be extended from G \ K to G as a solution of this equation.
Sobre autores
A. Pokrovskii
Institute of Mathematics, National Academy of Sciences of Ukraine
Autor responsável pela correspondência
Email: pokrovsk@imath.kiev.ua
Ucrânia, Kiev
Arquivos suplementares
