On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure
- 作者: Pokrovskii A.V.1
-
隶属关系:
- Institute of Mathematics, National Academy of Sciences of Ukraine
- 期: 卷 52, 编号 1 (2018)
- 页面: 62-65
- 栏目: Brief Communications
- URL: https://journal-vniispk.ru/0016-2663/article/view/234409
- DOI: https://doi.org/10.1007/s10688-018-0209-4
- ID: 234409
如何引用文章
详细
It is shown that, for any compact set K ⊂ ℝn (n ⩾ 2) of positive Lebesgue measure and any bounded domain G ⊃ K, there exists a function in the Hölder class C1,1(G) that is a solution of the minimal surface equation in G \ K and cannot be extended from G \ K to G as a solution of this equation.
作者简介
A. Pokrovskii
Institute of Mathematics, National Academy of Sciences of Ukraine
编辑信件的主要联系方式.
Email: pokrovsk@imath.kiev.ua
乌克兰, Kiev
补充文件
