On Singular Points of Solutions of the Minimal Surface Equation on Sets of Positive Measure


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is shown that, for any compact set K ⊂ ℝn (n ⩾ 2) of positive Lebesgue measure and any bounded domain GK, there exists a function in the Hölder class C1,1(G) that is a solution of the minimal surface equation in G \ K and cannot be extended from G \ K to G as a solution of this equation.

作者简介

A. Pokrovskii

Institute of Mathematics, National Academy of Sciences of Ukraine

编辑信件的主要联系方式.
Email: pokrovsk@imath.kiev.ua
乌克兰, Kiev

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018