The Use of the Genetic Resources of Tetraploid Wheat Triticum aethiopicum on the Developing of Purple-Grain Common Wheat with a High Content of Anthocyanins

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article considers the results on the developing of purple-grain common wheat and the study of its genetic diversity. Triticum aethiopicum Jakubz. 2n = 28 is the only source of genes for the purple grains color among the wheat species. The trait of purple grain is accompanied by an increase in the content of anthocyanins and micronutrients in the grain. To develop common wheat lines with purple grain, T. aethiopicum k-19068 was first hybridized with the Iranian landrace T. aestivum k-14333. The resulting hybrids were then crossed with the highly productive common wheat cultivar Liza. The developing lines F6 (2n = 42) characterize low diversity on multiple alleles of gliading-coding loci (H = 0.410). They were dominated by alleles inherited from the parent variety Liza. No gliadin alleles that could belong to T. aethiopicum have been identified. Comparison of groups of lines with purple and white grains made it possible to show that they do not significantly differ from each other in terms of yield and elements of its structure. As a result, we have not found a negative correlation between the high content of anthocyanins in grain and grain productivity. This allows us to hope for the possibility of developing high-yielding lines of common wheat with purple grain enriched with anthocyanins.

About the authors

А. V. Fisenko

Vavilov Institute of General Genetics, Russian Academy of Sciences

Author for correspondence.
Email: fisenko800@mail.ru
Russia, 119991, Moscow

А. Yu. Dragovich

Vavilov Institute of General Genetics, Russian Academy of Sciences

Author for correspondence.
Email: dragova@mail.ru
Russia, 119991, Moscow

References

  1. He J., Giusti M.M. Anthocyanins: Natural colorants with health-promoting properties // Ann. Rev. Food Sci. Technol. 2010. V. 10. № 1. P. 163–187. https://doi.org/10.1146/annurev.food.080708.100754
  2. Khoo H.E., Lim S.M., Azlan A. Evidence-based therapeutic effects of anthocyanins from foods // Pak. J. Nutr. 2019. V. 18. № 1. P. 1–11. https://doi.org/10.3923/pjn.2019.1.11
  3. Bagchi D., Sen C.K., Bagchi M. et al. Anti-angiogenic, antioxidant and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula // Biochem. (Mosc.) 2004. V. 69. № 1. P. 75–80. https://doi.org/10.1023/b:biry.0000016355.19999.93
  4. Cui J., Li X.Y. Progress on anti-tumor mechanisms of anthocyanins (Chinese) // Food Sci. 2014. V. 35. P. 310–315.
  5. Chen W.C., Liu H.M., Liu J.S. Progress in the research on anticarcinogenic activities of anthocyanins (Chinese) // Food Res. Dev. 2016. V. 37. P. 211–215.
  6. Guo Z., Zhang Z., Xu P. Analysis of nutrient composition of purple wheat // Cereal Res. Commun. 2012. V. 41. № 2. P. 293–303. https://doi.org/10.1556/CRC.2012.0037
  7. Kaur S., Pandey A.K., Kumari A., Garg M. Physiological and molecular response of colored wheat seedlings against phosphate deficiency is linked to accumulation of distinct anthocyanins // Plant Physiology and Biochemistry. 2022. V. 170. P. 338–349. https://doi.org/10.1016/j.plaphy.2021.12.017
  8. Gupta P.K., Balyan H.S., Sharma S., Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: Present status and future prospects // Theor. Appl. Genet. 2021. V. 134. № 1. P. 1–35. https://doi.org/10.1007/s00122-020-03709-7
  9. Тихвинский С.Ф., Доронин С.В. Антоциановые пигменты растений и их роль в адаптивной селекции сельскохозяйственных культур // Теор. и прикладная экология. 2007. № 3. С. 15–19.
  10. Гордеева Е.И. Генетическая регуляция фиолетовой окраски перикарпа зерна мягкой пшеницы (Triticum aestivum L.). Автореф. дис. канд. биол. наук. Новосибирск: ИЦиГ СО РАН, 2014. 16 с.
  11. Khlestkina E.K., Tereshchenko O.Yu., Salina E.A. Flavonoid biosynthesis genes in wheat and wheat-alien hybrids: Studies into gene regulation in plants with complex genomes // Radiobiology and Environmental Security. Dordrecht, Netherlands: Springer, 2012. P. 31–41.
  12. Jiang W., Liu T., Nan W. et al. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat // J. Exp. Bot. 2018. V. 69. № 10. P. 2555–2567. https://doi.org/10.1093/jxb/ery101
  13. Garg M., Chawla M., Chunduri V. et al. Transfer of grain colors to elite wheat cultivars and their characterization // J. Cereal Sci. 2016. V. 71. P. 138–144. https://doi.org/10.1016/j.jcs.2016.08.004
  14. Sharma S., Kapoor P., Kaur S. et al. Changing nutrition scenario: Colored wheat – a new perspective // Physiological, Molecular, and Genetic Perspectives of Wheat Improvement. Cham, Switzerland: Springer, 2021. (eBook). https://doi.org/10.1007/978-3-030-59577-7_4
  15. Martinek P., Jirsa O., Vaculova K. et al. Use of wheat gene resources with different grain colour in breeding // Conference. Tagungsband der 64. Jahrestagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs. 25–26 November 2013. Raumberg-Gumpenstein. 2014. V. 1. P. 75–78.
  16. Metakovsky E.V., Novoselskaya A.Yu. Gliadin allele identification in common wheat. I. Methodological aspects // J. Genet. Breed. 1991. V. 45. P. 319–323.
  17. Metakovsky E.V. Gliadin allele identification on common wheat. II. Catalogue of gliadin allele in common wheat // J. Genet. Breed. 1991. V. 45. P. 325–344.
  18. Nei M. Molecular Population Genetics and Evolution. Amsterdam: Holland Press, 1975. 278 p.
  19. Central Statistical Agency of Ethiopia. Area and Production of Major Crops, Agricultural Sample Survey. Statistical Bulletin 586. Ethiopia: Addis Ababa, 2018.
  20. Мурашев В.В., Морозова З.А. Особенности морфогенеза пшеницы эфиопской T. aethiopicum Jacubz. (1974) в ЦРНЗ России; секция Dicoccoides; 2n = 28, геномы AuB // Научный альманах. Биологические науки. 2018. № 10-2(48). С. 163–173. https://doi.org/10.17117/na.2018.10.02.163

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 А.В. Фисенко, А.Ю. Драгович

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».