The human genome and COVID-19
- Autores: Stepanov V.A.1, Yankovsky N.K.2
-
Afiliações:
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
- Vavilov Institute of General Genetics, Russian Academy of Sciences
- Edição: Volume 61, Nº 5 (2025)
- Páginas: 3-13
- Seção: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://journal-vniispk.ru/0016-6758/article/view/296511
- DOI: https://doi.org/10.31857/S0016675825050012
- EDN: https://elibrary.ru/tmwedv
- ID: 296511
Citar
Resumo
The novel coronavirus infection (COVID-19) is an acute infectious disease caused by the SARS CoV2 virus. The COVID-19 pandemic has become a global challenge for health and science, and in the field of human genetics has led to a surge in research on the role of host genetics in susceptibility to and severity of infectious diseases. Despite the non-genetic etiology of COVID-19, genome-wide association studies and whole-genome and whole-exome analyses have identified a number of genomic regions that are significantly associated with susceptibility to infection and disease severity, modifying the risk of developing COVID-19 at the individual level. These data cannot serve as a basis for identifying risk groups or predicting the severity of the disease, but are useful for understanding the pathogenesis of the disease and developing approaches to its diagnosis and therapy. Studies at the level of post-genomic mechanisms regulating the implementation of genetic information have revealed specific patterns of expression and methylation of the genome in response to the virus and during disease progression and have shown the potential for developing targeted approaches for the treatment and prevention of COVID-19. The challenges for genetics as a science that have arisen with the development of the COVID-19 pandemic, the answers to them, the experience and accumulated data will undoubtedly be reflected in further substantiated approaches to the diagnosis, prevention and treatment of both COVID-19 and other rapidly spreading infectious diseases.
Texto integral

Sobre autores
V. Stepanov
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Autor responsável pela correspondência
Email: vadim.stepanov@medgenetics.ru
Rússia, Tomsk, 634050
N. Yankovsky
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: vadim.stepanov@medgenetics.ru
Rússia, Moscow, 119991
Bibliografia
- GWAS Catalog. The NHGRI-EBI Catalog of Human Genome-Wide Association Studies (https://www.ebi.ac.uk/gwas/home). Дата обращения 15 сентября 2024 г.
- Severe Covid-19 GWAS Group. Genomewide association study of severe covid-19 with respiratory failure // New Engl. J. Med. 2020. V. 383. № 16. P. 1522–1534. https://doi.org/10.1056/NEJMoa2020283
- Niemi M.E.K., Karjalainen J., Liao R.G. et al. Mapping the human genetic architecture of COVID-19 // Nature. 2021. V. 600. № 7889. P. 472–477. https://doi.org/10.1038/s41586‐021‐03767‐x
- Van der Made C.I., Simons A., Schuurs-Hoeijmakers J. et al. Presence of genetic variants among young men with severe COVID-19 // JAMA. 2020. V. 324. № 7. P. 663–673. https://doi.org/10.1001/jama.2020.13719
- Asano T., Boisson B., Onodi F. et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19 // Sci. Immunology. 2021. V. 6. № 62. https://doi.org/10.1126/sciimmunol.abl4348
- Fallerini C., Daga S., Mantovani S. еt al. Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males: Findings from a nested case-control study // Elife. 2021. № 10. https://doi.org/10.7554/eLife.67569
- Shikov A.E., Barbitoff Y.A., Glotov A.S. et al. Analysis of the spectrum of ACE2 variation suggests a possible influence of rare and common variants on susceptibility to COVID-19 and Severity of Outcome // Front. Genet. 2020. № 11. https://doi.org/10.3389/fgene.2020.551220
- Khadzhieva M.B., Gracheva A.S., Belopolskaya O.B. et al. COVID-19 severity: Does the genetic landscape of rare variants matter? // Front. Genet. 2023. № 14. https://doi.org/10.3389/fgene.2023.1152768
- Liu N., Zhang T., Ma L. et al. The impact of ABO blood group on COVID-19 infection risk and mortality: A systematic review and meta-analysis // Blood Rev. 2021. V. 48. P. 100785. https://doi.org/10.1016/j.blre
- Anisul M., Shilts J., Schwartzentruber J. еt al. A proteome-wide genetic investigation identifies several SARS-CoV-2-exploited host targets of clinical relevance // Elife. 2021. № 10. https://doi.org/10.7554/eLife.69719
- Horowitz J.E., Kosmicki J.A., Damask A. et al. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease // Nat. Genet. 2022. V. 54. № 4. P. 382–392. https://doi.org/10.1038/s41588-021-01006-7
- Zarubin A., Stepanov V., Markov A. et al. Structural variability, expression profile, and pharmacogenetic properties of tmprss2 gene as a potential target for COVID-19 therapy // Genes. 2020. V. 12. № 1. https://doi.org/10.3390/genes12010019
- Posadas-Sánchez R., Fragoso J.M., Sánchez-Muñoz F. et al. Association of the transmembrane serine protease-2 (TMPRSS2) polymorphisms with COVID-19 // Viruses. 2022. V. 14. № 9. https://doi.org/10.3390/v14091976
- Dieter C., Brondani L.A., Leitão C.B. еt al. Genetic polymorphisms associated with susceptibility to COVID-19 disease and severity: A systematic review and meta-analysis // PLoS One. 2022. V. 17. № 7. https://doi.org/10.1371/journal.pone.0270627
- Roberts G.H.L., Park D.S., Coignet M.V. et al. Ancestry DNA COVID-19 host genetic study identifies three novel loci. Preprint // medRxiv. 2020. https://doi.org/10.1101/2020.10.06. 20205864
- Downes D.J., Cross A.R., Hua P. еt al. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus // Nat. Genet. 2021. V. 53. № 11. P. 1606–1615. https://doi.org/10.1038/s41588-021-00955-3
- Tian C., Hromatka B.S., Kiefer A.K. et al. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections // Nat. Commun. 2017. V. 8. № 1. P. 599. https://doi.org/10.1038/s41467-017-00257-5
- Niemi M.E.K., Daly M.J., Ganna A. The human genetic epidemiology of COVID-19 // Nat. Rev. Genet. 2022. V. 23. № 9. P. 533–546. https://doi.org/10.1038/s41576-022-00478-5
- Shkurnikov M., Nersisyan S., Jankevic T. et al. Association of HLA class I genotypes with severity of coronavirus disease-19 // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.641900
- Shcherbak S.G., Changalidi A.I., Barbitoff Y.A. et al. Identification of genetic risk factors of Severe COVID-19 using extensive phenotypic data: A proof-of-concept study in a cohort of Russian patients // Genes (Basel). 2022. V. 13. № 3. https://doi.org/10.3390/genes13030534
- Shelton J.F., Shastri A.J., Ye C. et al. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity // Nat. Genet. 2021. V. 53. № 6. P. 801–808. https://doi.org/10.1038/s41588-021-00854-7
- Mathur R., Rentsch C.T., Morton C.E. et al. Ethnic differences in SARS-CoV-2 infection and COVID-19-related hospitalisation, intensive care unit admission, and death in 17 million adults in England: An observational cohort study using the OpenSAFELY platform // Lancet. 2021. V. 397. № 10286. P. 1711–1724. https://doi.org/10.1016/S0140-6736(21)00634-6
- Zeberg H., Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals // Nature. 2020. V. 587. P. 610–612. https://www.nature.com/articles/s41586-020-2818-3
- Kerner G., Quintana-Murci L. The genetic and evolutionary determinants of COVID-19 suscep-tibility // Europ. J. Hum. Genet. 2022. V. 30. № 8. P. 915–921. https://doi.org/10.1038/s41431-022-01141-7
- Souilmi Y., Lauterbur M.E., Tobler R. et al. An ancient viral epidemic involving host coronavirus interacting genes more than 20,000 years ago in East Asia // Curr. Biol. 2021. V. 31. № 16. P. 3504–3514. https://doi.org/10.1016/j.cub.2021.07.052
- Kawashima M., Ohashi J., Nishida N., Tokunaga K. Evolutionary analysis of classical HLA class I and II genes suggests that recent positive selection acted on DPB1*04:01 in Japanese population // PLoS One. 2012. V. 7. № 10. https://doi.org/10.1371/journal.pone.0046806
- Gusareva E., Ghosh A.G., Kharkov V. et al. From North Asia to South America: Tracing the longest human migration through genomic sequencing // Science. (in press).
- Prokop J.W., Hartog N.L., Chesla D. et al. High-density blood transcriptomics reveals precision immune signatures of SARS-CoV-2 infection in hospitalized individuals // Front. Immunology. 2021. № 12. https://doi.org/10.3389/fimmu.2021.694243
- Jackson H., Rivero Calle I., Broderick C. et al. Characterisation of the blood RNA host response underpinning severity in COVID-19 patients // Sci. Reports. 2022. V. 12. № 1. P. 12216. https://doi.org/10.1038/s41598-022-15547-2
- Balnis J., Madrid A., Hogan K.J. еt al. Blood DNA methylation and COVID-19 outcomes // Clin. Epigenetics. 2021. V. 13. № 1. P. 118. https://doi.org/10.1186/s13148-021-01102-9
- Calzani L., Zanotti L., Inglese E. et al. Role of epigenetics in the clinical evolution of COVID-19 disease. Epigenome-wide association study identifies markers of severe outcome // Europ. J. Med. Res. 2023. № 28. P. 81. https://doi.org/10.1186/s40001-023-01032-7
- Dey A., Vaishak K., Deka D. еt al. Epigenetic perspectives associated with COVID-19 infection and related cytokine storm: An updated review // Infection. 2023. V. 51. № 6. P. 1603–1618. https://doi.org/10.1007/s15010-023-02017-8
- AbdelHamid S.G., Refaat A.A., Benjamin A.M. et al. Deciphering epigenetic(s) role in modulating susceptibility to and severity of COVID-19 infection and/or outcome: A systematic rapid review // Envir. Sci. and Pollution Res. 2021. V. 28. № 39. P. 54209–54221. https://doi.org/10.1007/s11356-021-15588-6
- Khan A., Islam A. SARS-CoV-2 proteins Exploit Host’s genetic and epigenetic mediators for the annexation of key host signaling pathways // Front. Mol. Biosci. 2021. V. 7. https://doi.org/10.3389/fmolb.2020.598583
- Samaddar A., Gadepalli R., Nag V.L., Misra S. The enigma of low COVID-19 fatality rate in India // Front. Genet. 2020. № 11. https://doi.org/10.3389/fgene.2020.00854
- Sarma A., Phukan H., Halder N., Madanan M.G. An in-silico approach to study the possible interactions of miRNA between human and SARS-CoV2 // Comput. Biol. Chem. 2020. V. 88. P. 107352. https://doi.org/10.1016/j.compbiolchem
- Кучер А.Н., Королёва Ю.А., Зарубин А.А., Назаренко М.С. МикроРНК как потенциальные регуляторы инфицирования SARS-CОV-2 и модификаторы клинической картины COVID-19 // Мол. биология. 2022. Т. 56. № 1. С. 35–54. https://doi.org/10.31857/S0026898422010049
- Pashkov E.A., Korchevaya E.R., Faizuloev E.B. et al. Potential of application of the RNA interference phenomenon in the treatment of new coronavirus infection COVID-19 // Vopr. Virusol. 2021. V. 66. № 4. P. 241–251. https://doi.org/10.36233/0507-4088-61
- Акимкин В.Г., Зверев В.В., Кирпичников М.П. и др. Эпидемиологические, клеточные, генетические и эпигенетические аспекты биобезопасности // Вестник РАН. 2024. Т. 94. № 3. С. 287–298. https://doi.org/10.31857/S0869587324030127
- Пашков Е.А., Файзулоев Е.Б., Свитич О.А. и др. Перспектива создания специфических противогриппозных препаратов на основе синтетических малых интерферирующих РНК // Вопр. вирусологии. 2020. Т. 65. № 4. С. 182–190. https://doi.org/10.36233/0507-4088-2020-65-4-182-190
- Пашков Е.А., Корчевая Е.Р., Файзулоев Е.Б. и др. Создание модели изучения противовирусного действия малых интерферирующих РНК in vitro // Санитарный врач. 2022. № 1. С. 65–74. https://doi.org/10.33920/med-08-2201-07
Arquivos suplementares
