Trace Amines and Their Receptors: Historical Context and Contribution of Genetic Models to Research
- Authors: Murtazina R.Z1, Nifantova N.V1, Gainetdinov R.R1
-
Affiliations:
- Institute of Translational Biomedicine, Saint-Petersburg State University
- Issue: Vol 61, No 11 (2025)
- Pages: 254-262
- Section: МОЛЕКУЛЯРНАЯ ГЕНЕТИКА
- URL: https://journal-vniispk.ru/0016-6758/article/view/361203
- DOI: https://doi.org/10.7868/S3034510325110255
- ID: 361203
Cite item
Abstract
About the authors
R. Z Murtazina
Institute of Translational Biomedicine, Saint-Petersburg State UniversitySaint-Petersburg, Russia
N. V Nifantova
Institute of Translational Biomedicine, Saint-Petersburg State UniversitySaint-Petersburg, Russia
R. R Gainetdinov
Institute of Translational Biomedicine, Saint-Petersburg State University
Email: r.gainetdinov@spbu.ru
Saint-Petersburg, Russia
References
- Borowsky B., Adham N., Jones K.A. et al. Trace amines: Identification of a family of mammalian G proteincoupled receptors // PNAS USA. 2001. V. 98. № 16. P. 8966–8971. https://doi.org/10.1073/pnas.151105198
- Bunzow J.R., Sonders M.S., Arttamangkul S. et al. Amphetamine, 3,4-methylenedioxymethamphetami ne, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor // Mol. Pharmacol. 2001. V. 60. № 6. https://doi.org/10.1124/mol.60.6.1181.
- Berry M.D. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators // J. Neurochem. 2004. V. 90. № 2. P. 257–271. https://doi.org/10.1111/j.1471-4159.2004.02501.x
- Jansen S.C., Van Dusseldorp M., Bottema K.C. et al. Intolerance to dietary biogenic amines: A review // Ann. Allergy. Asthma Immunol. 2003. V. 91. № 3. https://doi.org/10.1016/S1081-1206(10)63523-5
- Grandy D.K. Trace amine-associated receptor 1-Family archetype or iconoclast? // Pharmacol. Ther. 2007. V. 116. № 3. P. 355–390. https://doi.org/10.1016/j.pharmthera.2007.06.007
- Gainetdinov R.R., Hoener M.C., Berry M.D. Trace amines and their receptors // Pharmacol. Rev. 2018. V. 70. № 3. P. 549–620. https://doi.org/10.1124/pr.117.015305
- Regard J.B., Sato I.T., Coughlin S.R. Anatomical profiling of G protein-coupled receptor expression // Cell. 2008. V. 135. № 3. P. 561–571. https://doi.org/10.1016/j.cell.2008.08.040
- Zucchi R., Chiellini G., Scanlan T.S. et al. Trace amine-associated receptors and their ligands // Br. J. Pharmacol. 2006. V. 149. № 8. P. 967–978. https://doi.org/10.1038/sj.bjp.0706948
- Lindemann L., Ebeling M., Kratochwil N.A. et al. Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G proteincoupled receptors // Genomics. 2005. V. 85. № 3. P. 372–385. https://doi.org/10.1016/j.ygeno.2004.11.010
- Eyun S.-Il, Moriyama H., Hoffmann F.G. et al. Molecular evolution and functional divergence of trace amine-associated receptors // PLoS One. 2016. V. 11. № 3. P. 1–24. https://doi.org/10.1371/journal.pone.0151023
- Муртазина Р.З., Гайнетдинов Р.Р. Трансгенные животные в экспериментальной фармакологии: фокус на рецепторах следовых аминов // Рос. физиол. журнал им. И.М. Сеченова. 2019. Т. 105. № 11. С. 1373–1380. https://doi.org/10.1134/s0869813919110098
- Lindemann L., Hoener M.C. A renaissance in trace amines inspired by a novel GPCR family // Trends Pharmacol. Sci. 2005. V. 26. № 5. P. 274–281. https://doi.org/10.1016/j.tips.2005.03.007
- Di Cara B., Maggio R., Aloisi G. et al. Genetic deletion of trace amine 1 receptors reveals their role in auto-inhibiting the actions of ecstasy (MDMA) // J. Neurosci. 2011. V. 31. № 47. P. 16928–16940. https://doi.org/10.1523/JNEUROSCI.2502-11.2011
- Wolinsky T.D., Swanson C.J., Smith K.E. et al. The trace amine 1 receptor knockout mouse: An animal model with relevance to schizophrenia // Gen. Brain Behav. 2007. V. 6. № 7. P. 628–639. https://doi.org/10.1111/j.1601-183X.2006.00292.x
- Lindemann L., Meyer C.A., Jeanneau K. et al. Trace amine-associated receptor 1 modulates dopaminergic activity // J. Pharmacol. Exp. Ther. 2008. V. 324. № 3. P. 948–956. https://doi.org/10.1124/jpet.107.132647
- Panas H.N., Lynch L.J., Vallender E.J. et al. Normal thermoregulatory responses to 3-iodothyronamine, trace amines and amphetamine-like psychostimulants in trace amine associated receptor 1 knockout mice // J. Neurosci. Res. 2010. V. 88. № 9. P. 1962. https://doi.org/10.1002/JNR.22367
- Суханов И.М., Звартау Э.Э., Гайнетдинов Р.Р. Рецепторы, ассоциированные со следовыми аминами, 1-го подтипа как новая терапевтическая мишень в нейропсихофармакологии // Эксперим. и клин. фармакология. 2019. Т. 82. № 5. С. 3–7. https://doi.org/10.30906/0869-2092-2019-82-5-3-9
- Bradaia A., Trube G., Stalder H. et al. The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system // PNAS USA. 2009. V. 106. № 47. P. 20081. https://doi.org/10.1073/PNAS.0906522106
- Revel F.G., Moreau J.L., Gainetdinov R.R. et al. TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity // PNAS USA. 2011. V. 108. № 20. P. 8485–8490. https://doi.org/10.1073/pnas.1103029108
- Achat-Mendes C., Lynch L.J., Sullivan K.A. et al. Augmentation of methamphetamine-induced behaviors in transgenic mice lacking the trace amineassociated receptor 1 // Pharmacol. Biochem. Behav. 2012. V. 101. № 2. P. 201–207. https://doi.org/10.1016/J.PBB.2011.10.025
- Mantas I., Vallianatou T., Yang Y. et al. TAAR1- dependent and -independent actions of tyramine in interaction with glutamate underlie central effects of monoamine oxidase inhibition // Biol. Psychiatry. 2021. V. 90. № 1. P. 16–27. https://doi.org/10.1016/J.BIOPSYCH.2020.12.008
- Espinoza S., Salahpour A., Masri B. et al. Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor // Mol. Pharmacol. 2011. V. 80. № 3. P. 416–425. https://doi.org/10.1124/mol.111.073304
- Revel F.G., Moreau J.-L., Gainetdinov R.R. et al. Trace amine-associated receptor 1 partial agonism reveals novel paradigm for neuropsychiatric therapeutics // Biol. Psychiatry. 2012. V. 72. № 11. P. 934–942. https://doi.org/10.1016/j.biopsych.2012.05.014
- Harmeier A., Obermueller S., Meyer C.A. et al. Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers // Eur. Neuropsychopharmacol. 2015. V. 25. № 11. P. 2049–2061. https://doi.org/10.1016/j.euroneuro.2015.08.011
- Halff E.F., Rutigliano G., Garcia-Hidalgo A. et al. Trace amine-associated receptor 1 (TAAR1) agonism as a new treatment strategy for schizophrenia and related disorders // Trends Neurosci. 2023. V. 46. № 1. P. 60–74. https://doi.org/10.1016/J.TINS.2022.10.010
- Koblan K.S., Kent J., Hopkins S.C. et al. A nonD2-receptor-binding drug for the treatment of schizophrenia // N. Engl. J. Med. 2020. V. 382. № 16. P. 1497–1506. https://doi.org/10.1056/NEJMoa1911772
- Heffernan M.L.R., Herman L.W., Brown S. et al. Ulotaront: A TAAR1 agonist for the treatment of schizophrenia // ACS Med. Chem. Lett. 2022. V. 13. № 1. P. 92–98. https://doi.org/10.1021/acsmedchemlett.1c00527
- Krasavin M., Peshkov A.A., Lukin A. et al. Discovery and in vivo efficacy of trace amine-associated receptor 1 (TAAR1) agonist 4-(2-Aminoethyl)-N-(3,5-dimethylphenyl)piperidine-1-carboxamide hydrochloride (AP163) for the treatment of psychotic disorders // Int. J. Mol. Sci. 2022. V. 23. № 19. https://doi.org/10.3390/ijms231911579
- Liberles S.D., Buck L.B. A second class of chemosensory receptors in the olfactory epithelium // Nature. 2006. V. 442. № 7103. P. 645–650. https://doi.org/10.1038/nature05066
- Berry M.D., Gainetdinov R.R., Hoener M.C. et al. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges // Pharmacol. Ther. 2017. V. 180. P. 161–180. https://doi.org/10.1016/j.pharmthera.2017.07.002
- Dinter J., Mühlhaus J., Wienchol C.L. et al. Inverse agonistic action of 3-iodothyronamine at the human trace amine-associated receptor 5 // PLoS One. 2015. V. 10. № 2. P. 1–19. https://doi.org/10.1371/journal.pone.0117774
- Duan J., Martinez M., Sanders A.R. et al. Polymorphisms in the trace amine receptor 4 (TRAR4) gene on chromosome 6q23.2 are associated with susceptibility to schizophrenia // Am. J. Hum. Genet. 2004. V. 75. № 4. P. 624–638. https://doi.org/10.1086/424887
- Carnicelli V., Santoro A., Sellari-Franceschini S. et al. Expression of trace amine-associated receptors in human nasal mucosa // Chemosens. Percept. 2010. V. 3. № 2. P. 99–107. https://doi.org/10.1007/s12078-010-9075-z
- Ohta H., Takebe Y., Murakami Y. et al. Tyramine and β-phenylethylamine, from fermented food products, as agonists for the human trace amine-associated receptor 1 (hTAAR1) in the stomach // Biosci. Biotechnol. Biochem. 2017. V. 81. № 5. P. 1002–1006. https://doi.org/10.1080/09168451.2016.1274640
- Vanti W.B., Muglia P., Nguyen T. et al. Discovery of a null mutation in a human trace amine receptor gene // Genomics. 2003. V. 82. № 5. P. 531–536. https://doi.org/10.1016/S0888-7543(03)00173-3
- D’Andrea G., Terrazzino S., Fortin D. et al. HPLC electrochemical detection of trace amines in human plasma and platelets and expression of mRNA transcripts of trace amine receptors in circulating leukocytes // Neurosci. Lett. 2003. V. 346. № 1–2. P. 89–92. https://doi.org/10.1016/S0304-3940(03)00573-1
- Babusyte A., Kotthoff M., Fiedler J. et al. Biogenic amines activate blood leukocytes via trace amineassociated receptors TAAR1 and TAAR2 // J. Leukoc. Biol. 2013. V. 93. № 3. P. 387–394. https://doi.org/10.1189/jlb.0912433
- Ito J., Ito M., Nambu H. et al. Anatomical and histological profiling of orphan G-protein-coupled receptor expression in gastrointestinal tract of C57BL/6J mice // Cell Tissue Res. 2009. V. 338. № 2. P. 257–269. https://doi.org/10.1007/s00441-009-0859-x
- Gozal E.A., O’Neill B.E., Sawchuk M.A. et al. Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord // Front. Neural Circuits. 2014. V. 8. P. 134. https://doi.org/10.3389/fncir.2014.00134
- Pronin A., Levay K., Velmeshev D. et al. Expression of olfactory signaling genes in the eye // PLoS One. 2014. V. 9. № 4. https://doi.org/10.1371/journal.pone.0096435
- Pacifico R., Dewan A., Cawley D. et al. An olfactory subsystem that mediates high-sensitivity detection of volatile amines // Cell Rep. 2012. V. 2. № 1. P. 76–88. https://doi.org/10.1016/j.celrep.2012.06.006
- Dewan A., Pacifico R., Zhan R. et al. Non-redundant coding of aversive odours in the main olfactory pathway // Nature. 2013. V. 497. № 7450. P. 486–489. https://doi.org/10.1038/nature12114
- Park S., Heu J., Scheldrup G. et al. Trace amineassociated receptors (TAARs) 2–9 knockout mice exhibit reduced wakefulness and disrupted REM sleep // Front. Psychiatry. 2024. V. 15. https://doi.org/10.3389/FPSYT.2024.1467964/FULL
- Espinoza S., Sukhanov I., Efimova E.V. et al. Trace amine-associated receptor 5 provides olfactory input into limbic brain areas and modulates emotional behaviors and serotonin transmission // Front. Mol. Neurosci. 2020. V. 5. № 13. https://doi.org/10.3389/fnmol.2020.00018
- Zeng Z., Fan P., Rand E. et al. Cloning of a putative human neurotransmitter receptor expressed in skeletal muscle and brain // Biochem. Biophys. Res. Commun. 1998. V. 242. № 3. P. 575–578. https://doi.org/10.1006/bbrc.1997.7591
- Efimova E.V., Kozlova A.A., Razenkova V. et al. Increased dopamine transmission and adult neurogenesis in trace amine-associated receptor 5 (TAAR5) knockout mice // Neuropharmac. 2021. V. 182. https://doi.org/10.1016/j.neuropharm.2020.108373
- Efimova E.V., Kuvarzin S.R., Mor M.S. et al. Trace amine-associated receptor 2 is expressed in the limbic brain areas and is involved in dopamine regulation and adult neurogenesis // Front. Behav. Neurosci. 2022. V. 16. https://doi.org/10.3389/fnbeh.2022.847410
- Liberles S.D. Trace amine-associated receptors: Ligands, neural circuits, and behaviors // Curr. Opin. Neurobiol. 2015. V. 34. P. 1–7. https://doi.org/10.1016/j.conb.2015.01.001
- Fleischer J. Mammalian olfactory receptors // Front. Cell Neurosci. 2009. V. 3. https://doi.org/10.3389/neuro.03.009.2009
- Johnson M.A., Tsai L., Roy D.S. et al. Neurons expressing trace amine-associated receptors project to discrete glomeruli and constitute an olfactory subsystem // PNAS USA. 2012. V. 109. № 33. P. 13410–13415. https://doi.org/10.1073/pnas.1206724109
- Dewan A. Olfactory signaling via trace amineassociated receptors // Cell Tiss. Res. 2021. V. 383. № 1. P. 395. https://doi.org/10.1007/S00441-020-03331-5
- Yoon K.H., Ragoczy T., Lu Z. et al. Olfactory receptor genes expressed in distinct lineages are sequestered in different nuclear compartments // PNAS USA. 2015. V. 112. № 18. P. E2403–E2409. https://doi.org/10.1073/pnas.1506058112
- Fei A., Wu W., Tan L. et al. Coordination of two enhancers drives expression of olfactory trace amineassociated receptors // Nat. Commun. 2021. V. 12. № 1. P. 3798. https://doi.org/10.1038/s41467-021-23823-4
- Shah A., Ratkowski M., Rosa A. et al. Olfactory expression of trace amine-associated receptors requires cooperative cis-acting enhancers // Nat. Commun. 2021. V. 12. № 1. https://doi.org/10.1038/S41467-021-23824-3
- Harmeier A., Meyer C.A., Staempfli A. et al. How female mice attract males: A urinary volatile amine activates a trace amine-associated receptor that induces male sexual interest // Front. Pharmacol. 2018. V. 9. https://doi.org/10.3389/fphar.2018.00924
- Ferrero D.M., Lemon J.K., Fluegge D. et al. Detection and avoidance of a carnivore odor by prey // PNAS USA. 2011. V. 108. № 27. P. 11235–11240. https://doi.org/10.1073/pnas.1103317108
- Li Q., Korzan W.J., Ferrero D.M. et al. Synchronous evolution of an odor biosynthesis pathway and behavioral response // Curr. Biol. 2013. V. 23. № 1. P. 11–20. https://doi.org/10.1016/j.cub.2012.10.047
- Hussain A., Saraiva L.R., Ferrero D.M. et al. Highaffinity olfactory receptor for the death-associated odor cadaverine // PNAS USA. 2013. V. 110. № 48. P. 19579–19584. https://doi.org/10.1073/pnas.1318596110
- Wettschureck N., Offermanns S. Mammalian G proteins and their cell type specific functions // Physiol. Rev. 2005. V. 85. № 4. P. 1159–1204. https://doi.org/10.1152/physrev.00003.2005
- Murtazina R.Z., Kuvarzin S.R., Gainetdinov R.R. TAARs and neurodegenerative and psychiatric disorders // Handbook of Neurotoxicity. Cham: Springer Int. Publ., 2021. P. 1–18. https://doi.org/10.1007/978-3-030-71519-9_223-1
- Navarro H.A., Gilmour B.P., Lewin A.H. A rapid functional assay for the human trace amine–associated receptor 1 based on the mobilization of internal calcium // SLAS Discov. 2006. V. 11. № 6. P. 688–693. https://doi.org/10.1177/1087057106289891
- Decker A.M., Mathews K.M., Blough B.E. et al. Validation of a high-throughput calcium mobilization assay for the human trace amine-associated receptor 1 // SLAS Discov. 2021. V. 26. № 1. P. 140–150. https://doi.org/10.1177/2472555220945279
- Underhill S.M., Hullihen P.D., Chen J. et al. Amphetamines signal through intracellular TAAR1 receptors coupled to Gα13 and GαS in discrete subcellular domains // Mol. Psychiatry. 2021. V. 26. № 4. P. 1208–1223. https://doi.org/10.1038/s41380-019-0469-2
- Wallrabenstein I., Kuklan J., Weber L. et al. Human trace amine-associated receptor TAAR5 can be activated by trimethylamine // PLoS One. 2013. V. 8. № 2. https://doi.org/10.1371/journal.pone.0054950
- Saraiva L.R., Kondoh K., Ye X. et al. Combinatorial effects of odorants on mouse behavior // PNAS USA. 2016. V. 113. № 23. P. E3300–E3306. https://doi.org/10.1073/PNAS.1605973113
- Xu Z., Li Q. TAAR agonists // Cell. Mol. Neurobiol. 2020. V. 40. № 2. P. 257–272. https://doi.org/10.1007/s10571-019-00774-5
- Mühlhaus J., Dinter J., Nürnberg D. et al. Analysis of human TAAR8 and murine Taar8b mediated signaling pathways and expression profile // Int. J. Mol. Sci. 2014. V. 15. № 11. https://doi.org/10.3390/IJMS151120638
Supplementary files

