The Use of Transgenic Plants Expressing Antimicrobial Peptide Genes as a Promising Strategy to Improve Plant Resistance to Phytopathogens
- Authors: Odintsova T.I1, Shiyan A.N1, Slezina M.P1
-
Affiliations:
- Vavilov Institute of General Genetics, Russian Academy of Sciences
- Issue: Vol 61, No 12 (2025)
- Pages: 3-19
- Section: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://journal-vniispk.ru/0016-6758/article/view/362705
- DOI: https://doi.org/10.7868/S3034510325120018
- ID: 362705
Cite item
Abstract
About the authors
T. I Odintsova
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: odintsova2005@rambler.ru
Moscow, Russia
A. N Shiyan
Vavilov Institute of General Genetics, Russian Academy of SciencesMoscow, Russia
M. P Slezina
Vavilov Institute of General Genetics, Russian Academy of SciencesMoscow, Russia
References
- Savary S., Willocquet L., Pethybridge S.J. et al. The global burden of pathogens and pests on major food crops // Nat. Ecol. Evol. 2019. V. 3. P. 430–439. https://doi.org/10.1038/s41559-018-0793-y
- Horbach R., Navarro-Quesada A.R., Knogge W., Deising H.B. When and how to kill a plant cell: Infection strategies of plant pathogenic fungi // J. Plant Physiol. 2011. V. 168. № 1. P. 51–62. https://doi.org/10.1016/j.jplph.2010.06.014
- Fisher M.C., Henk D.A., Briggs C.J. et al. Emerging fungal threats to animal, plant and ecosystem health // Nature. 2012. V. 484. P. 186–194. https://doi.org/10.1038/nature10947
- Avery S.V., Singleton I., Magan N., Goldman G.H. The fungal threat to global food security // Fungal Biol. 2019. V. 123. № 8. P. 555–557. https://doi.org/10.1016/j.funbio.2019.03.006
- Godfray H.C.J., Beddington J.R., Crute I.R. et al. Food security: The challenge of feeding 9 billion people // Science. 2010. V. 327. № 5967. P. 812–818. https://doi.org/10.1126/science.1185383
- Nazarov P.A., Baleev D.N., Ivanova M.I. et al. Infectious plant diseases: Etiology, current status, problems and prospects in plant protection // Acta Naturae. 2020. V. 12. № 3. P. 46–59. https://doi.org/10.32607/actanaturae.11026
- Dean R., Van Kan J.A., Pretorius Z.A. et al. The Top 10 fungal pathogens in molecular plant pathology // Mol. Plant Pathol. 2012. V. 13. № 4. P. 414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
- Nalley L., Tsiboe F., Durand-Morat A. et al. Economic and environmental impact of rice blast pathogen (Magnaporthe oryzae) alleviation in the United States // PLoS One. 2016. V. 11. https://doi.org/10.1371/journal.pone.0167295
- Beddow J.M., Pardey P.G., Chai Y. et al. Research investment implications of shifts in the global geography of wheat stripe rust // Nat. Plants. 2015. V. 1. https://doi.org/10.1038/nplants.2015.132.
- Kayim M., Nawaz H., Alsalmo A. Fungal diseases of wheat // Wheat. London: IntechOpen, 2022. https://doi.org/10.5772/intechopen.102661
- Różewicz M., Wyzińska M., Grabiński J. The most important fungal diseases of cereals – Problems and possible solutions // Agronomy. 2021. V. 11. https://doi.org/10.3390/agronomy11040714
- Mapuranga J., Chang J., Yang W. Combating powdery mildew: Advances in molecular interactions between Blumeria graminis f. sp. tritici and wheat // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.1102908
- Okungbowa F.I., Shittu H.O. Fusarium wilts: An overview // Environ. Res. J. 2012. V. 6. № 2. P. 83–102.
- Gordon T.R. Fusarium oxysporum and the Fusarium wilt syndrome // Annu. Rev. Phytopathol. 2017. V. 55. P. 23–39. https://doi.org/10.1146/annurev-phyto-080615-095919
- Cighir A., Mare A.D., Vultur F. et al. Fusarium spp. in human disease: Exploring the boundaries between commensalism and pathogenesis // Life (Basel). 2023. V. 13. № 7. https://doi.org/10.3390/life13071440
- McLaughlin C.S., Vaughan M.H., Campbell I.M. et al. Inhibition of protein synthesis by trichothecenes // Mycotoxins in Human and Animal Health / Eds. Rodricks J.V., Hesseltine C.W., Mehlman M.A. Park Forest South, IL, USA: Pathtox Publ., 1977. P. 263–273.
- Bin-Umer M.A., McLaughlin J.E., Basu D. et al. Trichothecene mycotoxins inhibit mitochondrial translation-implication for the mechanism of toxi-city // Toxins (Basel). 2011. V. 3. № 12. P. 1484–1501. https://doi.org/10.3390/toxins3121484
- Eskola M., Kos G., Elliott C.T. et al. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited 'FAO estimate' of 25 // Crit. Rev. Food Sci Nutr. 2020. V. 60. № 16. P. 2773–2789. https://doi.org/10.1080/10408398.2019.1658570
- Bradbury J.F. Guide to Plant Pathogenic Bacteria. Farnham Royal, Slough, UK: CAB Intern., 1986. 332 p.
- Mansfield J., Genin S., Magori S. et al. Top 10 plant pathogenic bacteria in molecular plant pathology // Mol. Plant Pathol. 2012. V. 13. № 6. P. 614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
- Bonn W.G., Van der Zwet T. Distribution and economic importance of fire blight // Fire Blight: The Disease and its Causative Agent, Erwinia amylovora. Wallingford, UK: CABI, 2000. P. 37–54.
- Update of a database of host plants of Xylella fastidiosa // EFSA J. 2016. V. 14. № 2. https://doi.org/10.2903/j.efsa.2016.4378
- Wang N., Trivedi P. Citrus huanglongbing: A newly relevant disease presents unprecedented challenges // Phytopathology. 2013. V. 103. № 7. P. 652–665. https://doi.org/10.1094/PHYTO-12-12-0331-RVW
- Zheng Z., Chen J., Deng X. Historical perspectives, management, and current research of Citrus HLB in Guangdong province of China, where the disease has been endemic for over a hundred years // Phytopathology. 2018. V. 108. № 11. P. 1224–1236. https://doi.org/10.1094/PHYTO-07-18-0255-IA
- Jones J.D.G., Dangl J.L. The plant immune system // Nature. 2006. V. 444. № 7117. P. 323–329. https://doi.org/10.1038/nature05286
- Zasloff M. Antimicrobial peptides of multicellular organisms // Nature. 2002. V. 415. № 6870. P. 389–395. https://doi.org/10.1038/415389a
- Tam J.P., Wang S., Wong K.H., Tan W.L. Antimicrobial peptides from plants // Pharmaceuticals. 2015. V. 8. № 4. P. 711–757. https://doi.org/10.3390/ph8040711
- Lima A.M., Azevedo M.I.G., Sousa L.M. et al. Plant antimicrobial peptides: An overview about classification, toxicity and clinical applications // Int. J. Biol. Macromol. 2022. V. 214. P. 10–21. https://doi.org/10.1016/j.ijbiomac.2022.06.043
- Li J., Hu S., Jian W. et al. Plant antimicrobial peptides: Structures, functions, and applications // Bot. Stud. 2021. V. 62. https://doi.org/10.1186/s40529-021-00312-x
- Brogden K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? // Nat. Rev. Microbiol. 2005. V. 3. № 3. P. 238–250. https://doi.org/10.1038/nrmicro1098
- Cardoso M.H., Meneguetti B.T., Costa B.O. et al. Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets // Int. J. Mol. Sci. 2019. V. 20. № 19. https://doi.org/10.3390/ijms20194877
- Montesinos E. Functional peptides for plant disease control // Annu. Rev. Phytopathol. 2023. V. 61. P. 301–324. https://doi.org/10.1146/annurev-phyto-021722-034312
- Kaur H., Garg H. Pesticides: Environmental impacts and management strategies // Pesticides – Toxic Aspects. London: IntechOpen, 2014. https://doi.org/10.5772/57399
- Carmona M.J., Molina A., Fernández J.A. et al. Expression of the α-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens // Plant J. 1993. V. 3. № 3. P. 4574–4562. https://doi.org/10.1111/j.1365-313x.1993.tb00165.x
- Terras F.R., Eggermont K., Kovaleva V. et al. Small cysteine-rich antifungal proteins from radish: Their role in host defense // Plant Cell. 1995. V. 7. № 5. P. 573–588. https://doi.org/10.1105/tpc.7.5.573
- Kostov K., Christova P., Slavov S., Batchvarova S. Constitutive expression of a radish defensin gene Rs-Afp2 in tomato increases the resistance to fungal pathogens // Biotechno. Biotechnol. Equip. 2009. V. 23. P. 1121–1125. https://doi.org/10.1080/13102818.2009.10817625
- Jha S., Chattoo B.B. Expression of a plant defensin in rice confers resistance to fungal phytopathogens // Transgenic Res. 2010. V. 19. № 3. P. 373–384. https://doi.org/10.1007/s11248-009-9315-7
- Li Z., Zhou M., Zhang Z. et al. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis // Funct. Integr. Genomics. 2011. V. 11. № 1. P. 63–70. https://doi.org/10.1007/s10142-011-0211-x
- Sadhu S., Jogam P., Gande K. et al. Expression of radish defensin (RsAFP2) gene in chickpea (Cicer arietinum L.) confers resistance to Fusarium wilt disease // Mol. Biol. Rep. 2023. V. 50. № 1. P. 11–18. https://doi.org/10.1007/s11033-022-08021-9
- Turrini A., Sbrana C., Pitto L. et al. The antifungal Dm-AMP1 protein from Dahlia merckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis // New Phytol. 2004. V. 163. № 2. P. 393–403. https://doi.org/10.1111/j.1469-8137.2004.01107.x
- Zhu Y.J., Agbayani R., Moore P.H. Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor // Planta. 2007. V. 226. № 1. P. 87–97. https://doi.org/10.1007/s00425-006-0471-1
- Jha S., Tank H.G., Prasad B.D., Chattoo B.B. Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani // Transgenic Res. 2009. V. 18. № 1. P. 59–69. https://doi.org/10.1007/s11248-008-9196-1
- Su Q., Wang K., Zhang Z. Ecotopic expression of the antimicrobial peptide DmAMP1W improves resistance of transgenic wheat to two diseases: Sharp eyespot and common root rot // Int. J. Mol. Sci. 2020. V. 21. № 2. https://doi.org/10.3390/ijms21020647
- Ghag S.B., Shekhawat U.K., Ganapathi T.R. Petunia floral defensins with unique prodomains as novel candidates for development of fusarium wilt resistance in transgenic banana plants // PLoS One. 2012. V. 7. № 6. https://doi.org/10.1371/journal.pone.0039557
- Gaspar Y.M., McKenna J.A., McGinness B.S. et al. Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1 // J. Exp. Bot. 2014. V. 65. № 6. P. 1541–1550. https://doi.org/10.1093/jxb/eru021
- Gao A.G., Hakimi S.M., Mittanck C.A. et al. Fungal pathogen protection in potato by expression of a plant defensin peptide // Nat. Biotechnol. 2000. V. 18. № 12. P. 1307–1310. https://doi.org/10.1038/82436
- Abdallah N.A., Shah D., Abbas D., Madkour M. Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt // GM Crops. 2010. V. 1. № 5. P. 344–350. https://doi.org/10.4161/gmcr.1.5.15091
- Kaur J., Fellers J., Adholeya A. et al. Expression of apoplast targeted plant defensin MtDef4.2 confers resistance to leaf rust pathogen Puccinia triticina but does not affect mycorrhizal symbiosis in transgenic wheat // Transgenic Res. 2017. V. 26. № 1. P. 37–49. https://doi.org/10.1007/s11248-016-9978-9
- Park H.C., Kang Y.H., Chun H.J. et al. Charac-terization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage // Plant Mol. Biol. 2002. V. 50. P. 59–69. https://doi.org/10.1023/a:1016005231852
- Portieles R., Ayra C., Gonzalez E. et al. NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions // Plant Biotechnol. J. 2010. V. 8. № 6. P. 678–690. https://doi.org/10.1111/j.1467-7652.2010.00501.x
- Soto N., Hernández Y., Delgado C. et al. Field resistance to Phakopsora pachyrhizi and Colletotrichum truncatum of transgenic soybean expressing the NmDef02 plant defensin gene // Front. Plant Sci. 2020. V. 11. https://doi.org/10.3389/fpls.2020.00562
- Kanzaki H., Nirasawa S., Saitoh H. et al. Over-expression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice // Theor. Appl. Genet. 2002. V. 105. № 6–7. P. 809–814. https://doi.org/10.1007/s00122-001-0817-9
- Ntui V.O., Thirukkumaran G., Azadi P. et al. Stable integration and expression of wasabi defensin gene in “Egusi” melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot // Plant Cell Rep. 2010. V. 29. № 9. P. 943–954. https://doi.org/10.1007/s00299-010-0880-2
- Khan R.S., Nakamura I., Mii M. Development of disease-resistant marker-free tomato by R/RS site-specific recombination // Plant Cell Rep. 2011. V. 30. № 6. P. 1041–1053. https://doi.org/10.1007/s00299-011-1011-4
- Muramoto N., Tanaka T., Shimamura T. et al. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots // Plant Cell Rep. 2012. V. 31. № 6. P. 9879–9897. https://doi.org/10.1007/s00299-011-1217-5
- Charity J.A., Hughes P., Anderson M.A. et al. Pest and disease protection conferred by expression of barley β-hordothionin and Nicotiana alata proteinase inhibitor genes in transgenic tobacco // Funct. Plant Biol. 2005. V. 32. № 1. P. 35–44. https://doi.org/10.1071/FP04105
- Oard S.V., Enright F.M. Expression of the antimi-crobial peptides in plants to control phytopathogenic bacteria and fungi // Plant Cell Rep. 2006. V. 25. № 6. P. 561–572. https://doi.org/10.1007/s00299-005-0102-5
- Epple P., Apel K., Bohlmann H. Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum // Plant Cell. 1997. V. 9. № 4. P. 509–520. https://doi.org/10.1105/tpc.9.4.509
- Chan Y.L., Prasad V., Sanjaya et al. Transgenic tomato plants expressing an Arabidopsis thionin (Thi2.1) driven by fruit-inactive promoter battle against phytopathogenic attack // Planta. 2005. V. 221. № 3. P. 386–393. https://doi.org/10.1007/s00425-004-1459-3
- Tawfik E., Hammad I., Bakry A. Production of transgenic Allium cepa by nanoparticles to resist Aspergillus niger infection // Mol. Biol. Rep. 2022. V. 49. № 3. P. 1783–1790. https://doi.org/10.1007/s11033-021-06988-5
- Hussien E.T. Production of transgenic Paulownia tomentosa (Thunb.) steud. using chitosan nanoparticles to express antimicrobial genes resistant to bacterial infection // Mol. Biol. Res. Commun. 2020. V. 9. № 2. P. 55–62. https://doi.org/10.22099/mbrc.2019.35331.1454
- Bouqellah N.A., Hussein E.T., Abdel Razik A.B. et al. Development of transgenic Paulownia trees expressing antimicrobial thionin genes for enhanced resistance to fungal infections using chitosan nanoparticles // Microb. Pathog. 2024. V. 191. https://doi.org/10.1016/j.micpath.2024.106659
- Iwai T., Kaku H., Honkura R. et al. Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin // Mol. Plant Microbe Interact. 2002. V. 15. № 6. P. 515–521. https://doi.org/10.1094/MPMI.2002.15.6.515
- Hoshikawa K., Ishihara G., Takahashi H., Nakamura I. Enhanced resistance to gray mold (Botrytis cinerea) in transgenic potato plants expressing thionin genes isolated from Brassicaceae species // Plant Biothechnol. 2012. V. 29. P. 87–93. https://doi.org/10.5511/plantbiotechnology.12.0125a
- Kanrar S., Venkateswari J.C., Kirti P.B., Chopra V.L. Transgenic expression of hevein, the rubber tree lectin, in Indian mustard confers protection against Alternaria brassicae // Plant Sci. 2002. V. 162. № 3. P. 441–448. https://doi.org/10.1016/S0168-9452(01)00588-X
- Pujade-Renaud V., Sanier C., Cambillau L. et al. Molecular characterization of new members of the Hevea brasiliensis hevein multigene family and analysis of their promoter region in rice // Biochim. Biophys. Acta. 2005. V. 1727. № 3. P. 151–161. https://doi.org/10.1016/j.bbaexp.2004.12.013
- Shukurov R.R., Voblikova V.D., Nikonorova A.K. et al. Transformation of tobacco and Arabidopsis plants with Stellaria media genes encoding novel hevein-like peptides increases their resistance to fungal pathogens // Transgenic Res. 2012. V. 21. № 2. P. 313–325. https://doi.org/10.1007/s11248-011-9534-6
- Beliaev D.V., Yuorieva N.O., Tereshonok D.V. et al. High resistance of potato to early blight is achieved by expression of the Pro-SmAMP1 Gene for hevein-like antimicrobial peptides from common chickweed (Stellaria media) // Plants (Basel). 2021. V. 10. № 7. https://doi.org/10.3390/plants10071395
- Koo J.C., Chun H.J., Park H.C. et al. Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants // Plant Mol. Biol. 2002. V. 50. № 3. P. 441–452. https://doi.org/10.1023/a:1019864222515
- Lee O.S., Lee B., Park N. et al. Pn-AMPs, the hevein-like proteins from Pharbitis nil confers disease resistance against phytopathogenic fungi in tomato, Lycopersicum esculentum // Phytochemistry. 2003. V. 62. № 7. P. 1073–1079. https://doi.org/10.1016/s0031-9422(02)00668-4
- De Bolle M.F., Osborn R.W., Goderis I.J. et al. Antimicrobial peptides from Mirabilis jalapa and Amaranthus caudatus: Expression, processing, localization and biological activity in transgenic tobacco // Plant Mol. Biol. 1996. V. 31. № 5. P. 993–1008. https://doi.org/10.1007/BF00040718
- Jia Z., Gou J., Sun Y. et al. Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus) // Tree Physiol. 2010. V. 30. № 12. P. 1599–1605. https://doi.org/10.1093/treephys/tpq093
- Zhu F., Cao M.Y., Zhu P.X. et al. Non-specific LIPID TRANSFER PROTEIN 1 enhances immunity against tobacco mosaic virus in Nicotiana benthamiana // J. Exp. Bot. 2023. V. 74. № 17. P. 5236–5254. https://doi.org/10.1093/jxb/erad202
- Molina A., García-Olmedo F. Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2 // Plant J. 1997. V. 12. № 3. P. 669–675. https://doi.org/10.1046/j.1365-313x.1997.00669.x
- Li X., Gasic K., Cammue B. et al. Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa) // Planta. 2003. V. 218. № 2. P. 226–232. https://doi.org/10.1007/s00425-003-1093-5
- Roy-Barman S., Sautter C., Chattoo B.B. Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses // Transgenic Res. 2006. V. 15. № 4. P. 435–446. https://doi.org/10.1007/s11248-006-0016-1
- Zhao J., Bi W., Zhao S. et al. Wheat apoplast-localized lipid transfer protein TaLTP3 enhances defense responses against Puccinia triticina // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.771806
- Jung H.W., Kim K.D., Hwang B.K. Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses // Planta. 2005. V. 221. № 3. P. 361–373. https://doi.org/10.1007/s00425-004-1461-9
- Almasia N.I., Bazzini A.A., Hopp H.E., Vazquez-Rovere C. Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants // Mol. Plant Pathol. 2008. V. 9. № 3. P. 329–338. https://doi.org/10.1111/j.1364-3703.2008.00469.x
- Darqui F.S., Radonic L.M., Trotz P.M. et al. Potato snakin-1 gene enhances tolerance to Rhizoctonia solani and Sclerotinia sclerotiorum in transgenic lettuce plants // J. Biotechnol. 2018. V. 283. P. 62–69. https://doi.org/10.1016/j.jbiotec.2018.07.017
- Balaji V., Smart C.D. Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum) // Transgenic. Res. 2012. V. 21. № 1. P. 23–37. https://doi.org/10.1007/s11248-011-9506-x
- Nahirñak V., Almasia N.I., Lia V.V. et al. Unveiling the defensive role of Snakin-3, a member of the subfamily III of Snakin/GASA peptides in potatoes // Plant Cell Rep. 2024. V. 43. № 2. https://doi.org/10.1007/s00299-023-03108-4
- Bouteraa M.T., Ben Romdhane W., Wiszniewska A. et al. Functional analysis of durum wheat GASA1 protein as a biotechnological alternative against plant fungal pathogens and a positive regulator of biotic stress defense // Plants (Basel). 2025. V. 14. № 1. https://doi.org/10.3390/plants14010112
- Weinhold A., Karimi Dorcheh E., Li R. et al. Antimicrobial peptide expression in a wild tobacco plant reveals the limits of host-microbe-manipulations in the field // eLife. 2018. V. 7. https://doi.org/10.7554/eLife.28715
- Jha S., Chattoo B.B. Transgene stacking and coordinated expression of plant defensins confer fungal resistance in rice // Rice. 2009. V. 2. P. 143–154. https://doi.org/10.1007/s12284-009-9030-2
- Nalluri N., Karri V. Over-expression of Tfgd2-RsAFP2 fusion gene isolated from fenugreek and radish shows enhanced disease resistance against Alternaria blight disease caused by Alternaria alternata in transgenic pigeonpea // Mol. Biol. Rep. 2025. V. 52. № 1. https://doi.org/10.1007/s11033-025-10471-w
- Rustagi A., Kumar D., Shekhar S. et al. Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens // Mol. Biotechnol. 2014. V. 56. № 6. P. 535–545. https://doi.org/10.1007/s12033-013-9727-8
- Cary J.W., Rajasekaran K., Jaynes J.M., Cleveland T.E. Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta // Plant Sci. 2000. V. 154. № 2. P. 171–181. https://doi.org/10.1016/s0168-9452(00)00189-8
- Rajasekaran K., Cary J.W., Jaynes J.M., Cleveland T.E. Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants // Plant Biotechnol. J. 2005. V. 3. № 6. P. 545–554. https://doi.org/10.1111/j.1467-7652.2005.00145.x
- Núñez-Muñoz L.A., Sánchez-García M.E., Calderón-Pérez B. et al. Metagenomic analysis of rhizospheric bacterial community of citrus trees expressing phloem-directed antimicrobials // Microb. Ecol. 2024. V. 87. № 1. https://doi.org/10.1007/s00248-024-02408-w
- Hao G., Bakker M.G., Kim H.S. Enhanced resistance to Fusarium graminearum in transgenic Arabidopsis plants expressing a modified plant thionin // Phytopathology. 2020. V. 110. № 5. P. 1056–1066. https://doi.org/10.1094/PHYTO-12-19-0447-R
- Parisi K., Shafee T.M.A., Quimbar P. et al. The evolution, function and mechanisms of action for plant defensins // Semin. Cell Dev. Biol. 2019. V. 88. P. 107–118. https://doi.org/10.1016/j.semcdb.2018.02.004
- Cools T.L., Struyfs C., Cammue B.P., Thevissen K. Antifungal plant defensins: Increased insight in their mode of action as a basis for their use to combat fungal infections // Future Microbiol. 2017. V. 12. P. 441−454. https://doi.org/10.2217/fmb-2016-0181
- Sathoff A.E., Samac D.A. Antibacterial activity of plant defensins // Mol. Plant Microbe Interact. 2019. V. 32. № 5. P. 507−514. https://doi.org/10.1094/MPMI-08-18-0229-CR
- Mirouze M., Sels J., Richard O. et al. A putative novel role for plant defensins: A defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance // Plant J. 2006. V. 47. № 3. P. 329−342. https://doi.org/10.1111/j.1365-313X.2006.02788.x
- Sasaki K., Kuwabara C., Umeki N. et al. The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat // J. Biotechnol. 2016. V. 228. P. 3−7. https://doi.org/10.1016/j.jbiotec.2016.04.015
- Stotz H.U., Spence B., Wang Y. A defensin from tomato with dual function in defense and development // Plant Mol. Biol. 2009. V. 71. № 1−2. P. 131−143. https://doi.org/10.1007/s11103-009-9512-z
- Terras F.R., Schoofs H.M., De Bolle M.F. et al. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds // J. Biol. Chem. 1992. V. 267. P. 15301–15309. https://doi.org/10.1016/S0021-9258(19)49534-3
- Osborn R.W., De Samblanx G.W., Thevissen K. et al. Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae // FEBS Lett. 1995. V. 368. P. 257–262. https://doi.org/10.1016/0014-5793(95)00666-W
- Stec B. Plant thionins – the structural perspective // Cell. Mol. Life Sci. 2006. V. 63. P. 1370–1385. https://doi.org/10.1007/s00018-005-5574-5
- Höng K., Austerlitz T., Bohlmann T., Bohlmann H. The thionin family of antimicrobial peptides // PLoS One. 2021. V. 16. № 7. https://doi.org/10.1371/journal.pone.0254549
- Slavokhotova A.A., Shelenkov A.A., Andreev Y.A., Odintsova T.I. Hevein-like antimicrobial peptides of plants // Biochemistry (Moscow). 2017. V. 82. № 13. P. 1659−1674. https://doi.org/10.1134/S0006297917130065
- Slavokhotova A.A., Naumann T.A., Price N.P. et al. Novel mode of action of plant defense peptides – hevein-like antimicrobial peptides from wheat inhibit fungal metalloproteases // FEBS J. 2014. V. 281. № 20. P. 4754−4764. https://doi.org/10.1111/febs.13015
- Van den Bergh K.P., Rougé P., Proost P. et al. Synergistic antifungal activity of two chitin-binding proteins from spindle tree (Euonymus europaeus L.) // Planta. 2004. V. 219. № 2. P. 221−232. https://doi.org/10.1007/s00425-004-1238-1
- Loo S., Tay S.V., Kam A. et al. Anti-fungal hevein-like peptides biosynthesized from quinoa cleavable hololectins // Molecules. 2021. V. 26. № 19. https://doi.org/10.3390/molecules26195909
- Ляпкова Н.С., Лоскутова Н.А., Майсурян А.Н. и др. Получение генетически модифицированных растений картофеля, несущих ген защитного пептида амаранта // Прикл. биохимия и микробиология. 2001. Т. 37. С. 349–354.
- Salminen T.A., Blomqvist K., Edqvist J. Lipid transfer proteins: classification, nomenclature, structure, and function // Planta. 2016. V. 244. № 5. P. 971−997. https://doi.org/10.1007/s00425-016-2585-4
- Yang Y., Li P., Liu C. et al. Systematic analysis of the non-specific lipid transfer protein gene family in Nicotiana tabacum reveal its potential roles in stress responses // Plant Physiol. Biochem. 2022. V. 172. P. 33−47. https://doi.org/10.1016/j.plaphy.2022.01.002
- Fahlberg P., Buhot N., Johansson O.N., Andersson M.X. Involvement of lipid transfer proteins in resistance against a non-host powdery mildew in Arabidopsis thaliana // Mol. Plant Pathol. 2019. V. 20. № 1. P. 69−77. https://doi.org/10.1111/mpp.12740
- Edstam M.M., Blomqvist K., Eklöf A. et al. Coexpression patterns indicate that GPI-anchored non-specific lipid transfer proteins are involved in accumulation of cuticular wax, suberin and sporopollenin // Plant Mol. Biol. 2013. V. 83. № 6. P. 625−649. https://doi.org/10.1007/s11103-013-0113-5
- Santos-Silva C.A.D., Ferreira-Neto J.R.C., Amador V.C. et al. From gene to transcript and peptide: A deep overview on non-specific lipid transfer proteins (nsLTPs) // Antibiotics (Basel). 2023. V. 12. № 5. 939. https://doi.org/10.3390/antibiotics12050939
- Segura A., Moreno M., Madueño F. et al. Snakin-1, a peptide from potato that is active against plant pathogens // Mol. Plant Microbe Interact. 1999. V. 12. № 1. P. 16−23. https://doi.org/10.1094/MPMI.1999.12.1.16
- Oliveira-Lima M., Benko-Iseppon A.M., Neto J.R.C.F. et al. Snakin: Structure, roles and applications of a plant antimicrobial peptide // Curr. Protein Pept. Sci. 2017. V. 18. № 4. P. 368–374. https://doi.org/10.2174/1389203717666160619183140
- Nahirñak V., Almasia N.I., Fernandez P.V. et al. Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition // Plant Physiol. 2012. V. 158. P. 252–263. https://doi.org/10.1104/pp.111.186544
Supplementary files


