The Effect of Pharmacological Agents on the Expression of the Genes of the Chaperone GrpE and Co-Chaperone IbpA in Escherichia coli Cells
- Authors: Smirnova S.V1, Kurkieva A.G1, Manukhov I.V2, Fomin V.V2, Abilev S.K1
-
Affiliations:
- Vavilov Institute of General Genetics of Russian Academic Science
- Moscow Institute of Physics and Technology
- Issue: Vol 61, No 12 (2025)
- Pages: 44–53
- Section: ОБЩАЯ ГЕНЕТИКА
- URL: https://journal-vniispk.ru/0016-6758/article/view/362708
- DOI: https://doi.org/10.7868/S3034510325120045
- ID: 362708
Cite item
Abstract
About the authors
S. V Smirnova
Vavilov Institute of General Genetics of Russian Academic Science
Email: s.v.smirnova.genet@gmail.com
Moscow, Russia
A. G Kurkieva
Vavilov Institute of General Genetics of Russian Academic ScienceMoscow, Russia
I. V Manukhov
Moscow Institute of Physics and TechnologyDolgoprudny, Russia
V. V Fomin
Moscow Institute of Physics and TechnologyDolgoprudny, Russia
S. K Abilev
Vavilov Institute of General Genetics of Russian Academic ScienceMoscow, Russia
References
- Feder M.E., Hofmann G.E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology // Annu. Rev. Physiol. 1999. V. 61. P. 243–282. https://doi.org/10.1146/annurev.physiol.61.1.243
- Richter K., Haslbeck K., Buchner J. The heat shock response: Life on the verge of death // Mol. Cell. 2010. V. 40. P. 253–266. https://doi.org/10.1016/j.molcel.2010.10.006
- Mayer M.P. Gymnastics of molecular chaperones // Mol. Cell. 2010. V. 39. P. 321–331. https://doi.org/10.1016/j.molcel.2010.07.012
- Kampinga H.H., Hageman J., Vos M.J. et al. Guidelines for the nomenclature of the human heat shock proteins // Cell Stress Chaperones. 2009. V. 14. P. 105–111. https://doi.org/10.1007/s12192-008-0068-7
- Hartl F.U., Bracher A., Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis // Nature. 2011. V. 475. P. 324–332. https://doi.org/10.1038/nature10317
- Евгеньев М.Б., Гарбуз Д.Г., Зацепина О.Г. Белки теплового шока: функции и роль в адаптации к гипертермии // Онтогенез. 2005. Т. 36. С. 265–273.
- Белан Д.В., Екимова И.В. Белки теплового шока при конформационных болезнях мозга // Рос. физиол. журнал им. И.М. Сеченова. 2019. Т. 105. С. 1465–1485.
- Rosenzweig R., Nillegoda N.B., Mayer M.P., Bukau B. The Hsp70 chaperone network // Nat. Rev. Mol. Cell Biol. 2019. V. 20. P. 665–680. https://doi.org/10.1038/s41580-019-0133-3
- Gong W.J., Golic K.G. Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration // Genetics. 2006. V. 172. P. 275–286. https://doi.org/10.1534/genetics.105.048793
- Zatsepina O.G., Przhiboro A.A., Yushenova I.A. et al. A Drosophila heat shock response represents an exception rather than a rule among Diptera species // Insect. Mol. Biol. 2016. V. 25. P. 431–449. https://doi.org/10.1111/imb.12235
- Asea A., Rehli M., Kabingu E. et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4 // J. Biol. Chem. 2002. V. 277. P. 15028-15034. https://doi.org/10.1074/jbc.M200497200
- Calderwood S.K., Mambula S.S., Gray P.J. Jr., Theriault J. Rextracellular heat shock proteins in cell signaling // FEBS Lett. 2007. V. 581. P. 3689–3694. https://doi.org/10.1016/j.febslet.2007.04.044
- Ghosh A.K., Sinha D., Mukherjee S. et al. LPS stimulates and Hsp70 down-regulates TLR4 to orchestrate differential cytokine response of culture-differentiated innate memory CD8+ T cells // Cytokine. 2015. V. 73. P. 44-52. https://doi.org/10.1016/j.cyto.2015.01.018
- Kakimura J., Kitamura Y., Takata K. et al. Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins // FASEB J. 2002. V. 16. P. 601–603. https://doi.org/10.1096/fj.01-0530fje
- Guzhova I., Kislyakova K., Moskaliova O. et al. In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stresstolerance // Brain Res. 2001. V. 914. P. 66–73. https://doi.org/10.1016/s0006-8993(01)02774-3
- Bobkova N.V., Garbuz D.G., Nesterova I.M. et al. Therapeutic effect of exogenous Hsp70 in mouse models of Alzheimer’s Disease // J. Alzheimers Dis. 2014. V. 38. P. 425–435. https://doi.org/10.3233/JAD-130779
- Evgen’ev M.B., Krasnov G.S., Nesterova I.V. et al. Molecular mechanisms underlying neuroprotective effect of intranasal administration of human Hsp70 in mouse model of Alzheimer’s Disease // J. Alzheimers Dis. 2017. V. 59. P. 415–426. https://doi.org/10.3233/JAD-170398
- De Mena L., Chhangani D., Fernandez-Funez P., Rincon-Limas D.E. Sec Hsp70 as a tool to approach amyloid-β42 and other extracellular amyloids // Fly. 2017. V. 11. P. 179–184. https://doi.org/10.1080/19336934.2017.1291104
- Hervás R., Oroz J. Mechanistic insights into the role of molecular chaperones in protein misfolding diseases: From molecular recognition to amyloid disassembly // Int. J. Mol. Sci. 2020. V. 21. https://doi.org/10.3390/ijms21239186
- Zhao K., Zhou G., Liu Y. et al. HSP70 family in cancer: Signaling mechanisms and therapeutic advances // Biomolecules. 2023. V. 13. P. 601. https://doi.org/10.3390/biom13040601
- Nadin S.B., Vargas-Roig L.M., Drago G. et al. Hsp27, Hsp70 and mismatch repair proteins hMLH1 and hMSH2 expression in peripheral blood lymphocytes from healthy subjects and cancer patients // Cancer Lett. 2007. V. 252. P. 131–146. https://doi.org/10.1016/j.canlet.2006.12.028
- Dubrez L., Causs S., Bonan N.B. et al. Heat-shock proteins: chaperoning DNA repair // Oncogene. 2020. V. 39. P. 516–529. https://doi.org/10.1038/s41388-019-1016-y
- Tran P.L., Kim S.A., Choi H.S. et al. Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo // BMC Cancer. 2010. V. 10. P. 276. https://doi.org/10. 1186/1471-2407-10-276
- Park S.H., Baek K.H., Shin I., Shin I. Subcellular Hsp70 inhibitors promote cancer cell death via different mechanisms // Cell. Chem. Biol. 2008. V. 25. P. 1242–1254. https://doi.org/10.1016/j.chembiol.2018.06.010
- Du S., Liu Y., Yuan Y. et al. Advances in the study of HSP70 inhibitors to enhance the sensitivity of tumor cells to radiotherapy // Front. Cell Dev. Biol. 2002. V. 10. https://doi.org/10.3389/fcell.2022.942828
- Van Dyk T.K., Rosson R.A. Photorhabdus luminescens luxCDABE promoter probe vectors // Methods Mol Biol. 1998. V. 102. P. 85–95. https://doi.org/10.1385/0-89603-520-4:85
- Мелькина О.Е., Котова В.Ю., Манухов И.В., Завильгельский Г.Б. Влияние шаперонов IbpAB и Clpa на DnaKJE-зависимый рефолдинг бактериальных люцифераз в клетках Escherichia coli // Мол. биология. 2011. Т. 45. С. 524–528.
- Завильгельский Г.Б., Котова В.Ю., Манухов И.В. Сенсорные биолюминесцентные системы на основе lux-оперонов для детекции токсичных веществ // Хим. физика. 2012. Т. 31. № 10. С. 15–20.
- Collins J.A., Osheroff N. Gyrase and topoisomerase iv: Recycling old targets for new antibacterials to combat fluoroquinolone resistance // ACS Infect. Dis. 2024. V. 10. P. 1097−1115. https://doi.org/10.1021/acsinfecdis.4c00128
- Badawy S., Yang Y., Liu Y. et al. Toxicity induced by ciprofloxacin and enrofloxacin: oxidative stress and metabolism // Crit. Rev. Toxicol. 2021. V. 51. P. 754–787. https://doi.org/10.1080/10408444.2021.2024496
- Adams R.A., Leon G., Miller N.M. et al. Rifamycin antibiotics and the mechanisms of their failure // J. Antibiotic. 2021. V. 74. P. 786–798. https://doi.org/10.1038/s41429-021-00462-x
- Дурнев А.Д., Дубовская О.Ю., Нигарова Э.А. и др. Роль свободных радикалов кислорода в механизме мутагенного действия диоксидина // Хим.-фарм. журн. 1989. Т. 23. № 11. С. 1289–1294.
- Anirudha G., Khynriam D., Prasad S.B. Vitamin C mediated protection on cisplatin induced mutagenicity in mice // Mutat. Res. 1998. V. 42. P. 139–148. https://doi.org/10.1016/s0027-5107(98)00158-4
- Zhang N., Yin Y., Xu S.-J., Chen W.-S. 5-Fluorouracil: Mechanisms of resistance and reversal strategies // Molecules. 2008. V. 3. № 8. P. 1551–1569. https://doi.org/10.3390/molecules13081551
- Munshi P.N., Lubin M., Bertino J.R. 6-Thioguanine: A drug with unrealized potential for cancer therapy // Oncologist. 2014. V. 13. P. 760–765. https://doi.org/0.1634/theoncologist.2014-0178
- Djordjevic B., Szybalski W. Genetics of human cell lines: III. Incorporation of 5-bromo- and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity // Exp Med. 1960. V. 112. P. 509–531.
- Paz M.M., Zhang H., Lu J., Holmgren A. A new mechanism of action for the anticancer drug mitomycin c: mechanism-based inhibition of thioredoxin reductase // Chem. Res. Toxicol. 2012. V. 25. P. 1502–1511. https://doi.org/10.1021/tx3002065
- Lu D.-F., Wang Y.-S., Li C. et al. Actinomycin D inhibits cell proliferations and promotes apoptosis in osteosarcoma cells // Int. J. Clin. Exp. Med. 2015. V. 8. № 2. P. 1904–1911.
- Bailleul B., Daubersies P., Galiègue-Zouitina S., Loucheux-Lefebvre M.H. Molecular basis of 4-nitroquinoline 1-oxide carcinogenesis // Jpn. J. Cancer Res. 1989. V. 80. P. 691–697.
- Maron D.M., Ames B.N. Revised methods for Salmonella mutagenicity test // Mutat. Res. 1983. V. 113. P. 173–215. https://doi.org/10.1016/0165-1161(83)90010-9
- Попов Д.А., Анучина Н.М., Терентьев А.А. и др. Диоксидин: антимикробная активность и перспективы клинического применения на современном этапе // Антибиотики и химиотерапия. 2013. № 3–4.
- Overbeck T.L., Knight J.M., Beck D.J. A comparison of the genotoxic effects of carboplatin and cisplatin in Escherichia coli // Mutat. Res. 1996. V. 362. P. 249–259. https://doi.org/10.1016/0921-8777(95)00056-9
- Verwei J., Pinedo H.M. Mitomycin C: mechanism of action, usefulness and limitations // Anticancer Drugs. 1990. V. 1. № 1. P. 5–13.
- Ros H.H., Caldeira M., Reynolds B.A. et al. Bromodeoxyuridine inhibits cancer cell proliferation in vitro and in vivo // Neoplasia. 2008. V. 10. P. 804–816. https://doi.org/10.1593/neo.08382
- Chang S., Lamm S.H. Human health effects of sodium azide exposure: A literature review and analysis // Int. J. Toxicol. 2003. V. 22. P. 175–186. https://doi.org/10.1080/10915810305109
- Nealson K.H., Platt T., Hastings J.W. Cellular control of the synthesis and activity of the bacterial luminescent system // J. Bacteriol. 1970. V. 104. P. 313–322. https://doi.org/10.1128/jb.104.1.313-322.1970
- Daunert S., Barett G., Feliciano J.S. et al. Genetically engineered whole cell sensing systems: coupling biological recognition with reporter genes // Chem. Rev. 2000. V. 100. P. 2705–2738. https://doi.org/10.1021/cr990115p
- Fomin V.V., Bazhenov S.V., Kononchuk O.V., et al. Photorhabdus lux-operon heat shock-like regulation // Heliyon. 2023. V. 9. e14527. https://doi.org/10.1016/j.heliyon.2023.e14527
- Bazhenov S.V., Novoyatlova U.S., Scheglova E.S. et al. Bacterial lux-biosensors: constructing, applications, and prospects // Biosensors and Bioelectronics. 2023. V. 13. https://doi.org/10.1016/j.biosx.2023.100323
- Abilev S.K., Igonina E.V., Sviridova D.A., Smirnova S.V. Bacterial lux biosensors in genotoxicological studies // Biosensors. 2023. V. 13. № 511. https://doi.org/10.3390/bios13050511
- Zhu Y., Elcin E., Jiang M. et al. Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems // Front. Chem. 2022. V. 10. https://doi.org/10.3389/fchem.2022.1018124.
- Kotova V.Y., Manukhov I.V., Zavilgelskii G.B. Lux-biosensors for detection of SOS-response, heat shock, and oxidative stress // Appl. Biochem. Microbiol. 2010. V. 46. P. 781–788.
- Дурнев А.Д., Жанатаев А.К., Еремина Н.И. Глава 1 // Генетическая токсикология. М.: Миттель-Пресс, 2022. C. 18–36.
- Chatterjee N., Walker G.C. Mechanisms of DNA damage, repair and mutagenesis // Environ Mol. Mutagen. 2017. V. 58. P. 235–263. https://doi.org/10.1002/em.22087
- Liebler D.C. Protein damage by reactive electrophiles: targets and consequences // Chem. Res. Toxicol. 2008. V. 21. P. 117–128. https://doi.org/10.1021/tx700235t
- LoPachin R.M., Gavin T. Reactions of electrophiles with nucleophilic thiolate sites: Relevance to pathophysiological mechanisms and remediation // Free Radic Res. 2016. V. 50. P. 195–205. https://doi.org/10.3109/10715762.2015.1094184
- Свиридова Д.А., Мачигов Э.А., Игонина Е.В. и др. Изучение механизма генотоксичности диоксидина с помощью lux-биосенсоров Esсherichia coli // Радиац. биология. Радиоэкология. 2020. Т. 60. № 6. С. 595–603. https://doi.org/10.31857/S0869803120060223
Supplementary files


