Prediction of reproducibility of effects for regressions based on top predictors

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Two simple methods for predicting the reproducibility of effects in test samples after multiple regression analysis of the discovery sample are proposed. In particular, the method allows us to assess the feasibility of constructing efficient polygenic risk indices (PRS, PGS). Using the theory of ordinal statistics, we obtained a simple analytical formula that estimates the coefficient of determination for the model constructed for the top neutral indices (). This is the coefficient of determination under the null hypothesis, which depends only on the sample size, the total number of indicators studied (e.g., snips or CpG methylation levels), and the number of top indicators chosen to construct the regression. Comparing the observed multiple correlation square for the discovery sample with . Allows a reasonably confident prediction of the reproducibility of effects in the test samples. If the observed correlation square for the discovery sample is 1.3 times , then at least half of the original correlation square can be expected in the test samples. The second method is based on a similar comparison of the maximum correlation coefficient for the discovery sample with the expected maximum correlation for neutral traits.

Авторлар туралы

A. Rubanovich

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: rubanovich@vigg.ru
Moscow, 119991 Russia

Әдебиет тізімі

  1. Fan J., Lv J. A selective overview of variable selection in high dimensional feature // Space. Stat. Sin. 2010. V. 20(1). P. 101–148. PMID: 21572976; PMCID: PMC3092303
  2. Hastie T., Tibshirani Robert, Tibshirani Ryan. Best subset, forward stepwise or lasso? Analysis and recommendations based on extensive comparisons // Stat. Science. 2020. V. 35. № 4. Р. 579–592. https://doi.org/10.1214/19-STS733
  3. Christopher R., Genovese C.R., Jin J., Wasserman L. Revisiting marginal regression // arXiv:0911.4080v1 [math.ST]. 2009.
  4. Genovese C.R., Jin J., Wasserman L., Yao Z. A compa- rison of the lasso and marginal regression // J. Mach. Learn. Res. 2012. V. 13(1). P. 2107–2143.
  5. Leek J. Prediction: The lasso vs just using the top 10 predictors // Blog “Simply Statistics”. 2012. http://simplystatistics.tumblr.com/post/18132467723/ prediction-the-lasso-vs-just-using-the-top-10
  6. Freedman D.A. A note on screening regression equations // Am. Stat. 1983. V. 37. № 2. P. 152–155.
  7. Lukacs P.M., Burnham K.P., Anderson D.R. Model selection bias and Freedman’s paradox // Ann. Inst. Stat. Math. 2010. V. 62. P. 117–125. https://doi.org/10.1007/s10463-009-0234-4.
  8. Rubanovich A.V., Khromov-Borisov N.N. Genetic risk assessment of the joint effect of several genes: Cri- tical appraisal // Russ. J. Genet. 2016. V. 52. № 7. P. 757–769. https://doi.org/10.1134/S1022795416070073
  9. Alam К., Wallenius К. Distribution of a sum of order statistics // Scand. J. Stat. 1979. V. 6. № 3. P. 123–126.
  10. Rencher A.C., Pun F.C. Inflation of R2 in best subset regression // Technometrics. 1980. V. 22(1). P. 49–53. https://doi.org/10.2307/1268382
  11. Salt D.W., Ajmani S., Crichton R., Livingstone J.D. An improved approximation to the estimation of the cri- tical F values in best subset regression // J. Chem. Inf. Model. 2007. V. 47. № 1.
  12. Wray N.R., Yang J., Hayes B.J. et al. Pitfalls of predicting complex traits from SNPs // Nat. Rev. Genet. 2013. V. 14. № 7. P. 507–515. https://doi.org/10.1038/nrg3457.5
  13. Ahsanullah M., Nevzorov V.N., Shakil M. An Introduction to Order Statistics. Amsterdam–Paris–Beijing: Atlantis Press, 2013. 244 p.
  14. Nagaraja H.N. Contributions to the theory of the selection differential and to order statistics. 1980. Dissertation. Digital Repository @ Iowa State Univ. http://lib.dr.iastate.edu/rtd/6746/
  15. Cohen J.E. Statistical Power Analysis for the Behavio- ral Sciences. Hillsdale, N.J.: Lawrence Erlbaum Associates, Inc. 1988.
  16. Borinskaya S.A., Rubanovich A.V., Larin A.K. et al. Epigenome-wide association study of CpG methylation in aggressive behavior // Russ. J. Genet. 2021. V. 57. № 12. P. 1454–1460. https://doi.org/10.1134/S1022795421120048
  17. Koch S., Schmidtke J., Krawczak M., Caliebe A. Clinical utility of polygenic risk scores: A critical 2023 appraisal // J. Community Genet. 2023. V. 14(5). P. 471–487. https://doi.org/10.1007/s12687-023-00645-z
  18. Herzig A.F., Clerget-Darpoux F., Génin E. The false dawn of polygenic risk scores for human disease prediction // J. Pers Med. 2022. V. 12(8). https://doi.org/10.3390/jpm12081266.
  19. Benjamini Y., De Veaux R., Efron B. et al. ASA President’s task force statement on statistical significance and replicability // Harvard Data Sci. Review. 2021. V. 3(3). https://doi.org/10.1162/99608f92.f0ad0287
  20. McShane B.B., Gal D., Gelman A. et al. Abandon statistical significance // Am. Statistician. 2019. V. 73. Supl. 1. P. 235–245. https://doi.org/10.1080/00031305.2018.1527253
  21. Cheruiyot E.K., Yang T., McRae A.F. GWAS significance thresholds in large cohorts // BioRxiv preprint. 2024. https://doi.org/10.1101/2024.12.09.627629

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».