Новый аллель 5'-UTR LcyE коррелирует с повышенной экспрессией гена ликопин-ε-циклазы, определяющей поток ветви β-ε пути биосинтеза каротиноидов у кукурузы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Окраска зерна кукурузы Zea mays L. определяется содержанием и составом каротиноидов, в том числе провитамина А, являющегося продуктом ветвей β-β (β-каротин, β-криптоксантин) и β-ɛ (α-каротин) каротиногенеза. Соотношение потоков ветвей зависит от активности ликопин-ɛ-циклазы LcyE, определяющей ветвь β-ɛ. В данной работе проведен анализ аллельных вариантов гена LcyE, потенциально эффективных для повышения биосинтеза β-каротина, у 20 инбредных линий кукурузы отечественной селекции, различающихся окраской зерна. Амплифицированы и секвенированы участки 5'-UTR гена LcyE. Анализ фрагментов показал присутствие аллеля “2” у четырех линий и нового аллеля “5” у 16 линий. Охарактеризован полиморфизм нового аллеля “5” – четыре мононуклеотидных полиморфизма и две делеции. Проведенное сравнение цис-регуляторных элементов в анализируемой области 5'-UTR аллелей “2” и “5” обнаружило различие в сайтах связывания с транскрипционными факторами. Экспрессия гена LcyE определена в листьях двух линий с аллелем “2” и трех – с аллелем “5”. Показана прямая зависимость между присутствием аллеля “5” и снижением экспрессии гена: уровень транскрипции гена в случае аллеля “2” в 10–15 раз выше, чем в случае аллеля “5”. Предполагаем, что наличие в геноме кукурузы аллеля “5” гена LcyE коррелирует со снижением или подавлением экспрессии данного гена и, при стабильной активности других ферментов каротиногенеза, с окраской зерна. Использование доноров аллеля “5” в комбинации с известной темно-желтой или оранжевой окраской зерна может быть использовано в селекции кукурузы с повышенным синтезом провитамина А в зерне.

Об авторах

Д. Х. Архестова

Институт биоинженерии, Федеральный исследовательский центр “Фундаментальные
основы биотехнологии” Российской академии наук; Институт сельского хозяйства – филиал Кабардино-Балкарского научного центра
Российской академии наук

Email: gleb_efremov@mail.ru
Россия, 119071, Москва; Россия, 360004, Нальчик

Г. И. Ефремов

Институт биоинженерии, Федеральный исследовательский центр “Фундаментальные
основы биотехнологии” Российской академии наук

Автор, ответственный за переписку.
Email: gleb_efremov@mail.ru
Россия, 119071, Москва

С. П. Аппаев

Институт сельского хозяйства – филиал Кабардино-Балкарского научного центра
Российской академии наук

Email: gleb_efremov@mail.ru
Россия, 360004, Нальчик

Е. З. Кочиева

Институт биоинженерии, Федеральный исследовательский центр “Фундаментальные
основы биотехнологии” Российской академии наук

Email: gleb_efremov@mail.ru
Россия, 119071, Москва

А. В. Щенникова

Институт биоинженерии, Федеральный исследовательский центр “Фундаментальные
основы биотехнологии” Российской академии наук

Email: gleb_efremov@mail.ru
Россия, 119071, Москва

Список литературы

  1. Harjes C.E., Rocheford T.R., Bai L. et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification // Science. 2008. V. 319. P. 330–333. https://doi.org/10.1126/science.1150255
  2. Kurilich A.C., Juvik J.A. Quantification of carotenoid and tocopherol antioxidants in Zea mays // J. Agric. Food Chem. 1999. V. 47. P. 1948–1955. https://doi.org/10.1021/jf981029d
  3. O’Hare T.J., Martin I., Fanning K.J. et al. Sweetcorn colour change and consumer perception associated with increasing zeaxanthin for the amelioration of age-related macular degeneration // Acta Horticulturae. 2014. V. 1040. P. 221–226. https://doi.org/10.17660/ActaHortic.2014.1040.30
  4. Yadav O.P., Hossain F., Karjagi C.G. et al. Genetic improvement of maize in India: Retrospect and prospects // Agric. Res. 2015. V. 4. № 4. P. 325–338. https://doi.org/10.1007/s40003-015-0180-8
  5. Zunjare R.U., Chhabra R., Hossain F. et al. Molecular characterization of 5'-UTR of the lycopene epsilon cyclase (lcyE) gene among exotic and indigenous inbreds for its utilization in maize biofortification // 3 Biotech. 2018. V. 8. № 1. Р. 75. https://doi.org/10.1007/s13205-018-1100-y
  6. Cunningham F.X., Jr., Pogson B., Sun Z. et al. Functional analysis of the β and ε lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation // Plant Cell. 1996. V. 8. P. 1613–1626. https://doi.org/10.1105/tpc.8.9.1613
  7. Rosas-Saavedra C., Stange C. Biosynthesis of carotenoids in plants: Enzymes and color // Subcell Biochem. 2016. V. 79. P. 35–69. https://doi.org/10.1007/978-3-319-39126-7_2
  8. Wong J.C., Lambert R.J., Wurtzel E.T., Rocheford T.R. QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize // Theor. Appl. Genet. 2004. V. 108. № 2. P. 349–359. https://doi.org/10.1007/s00122-003-1436-4
  9. Krinsky N.I., Johnson E.J. Carotenoid actions and their relation to health and disease // Mol. Aspects of Med. 2005. V. 26. № 6. P. 459–516. https://doi.org/10.1016/j.mam.2005.10.001
  10. Nagao A., Olson J.A. Enzymatic formation of 9-cis, 13-cis, and all-trans retinals from isomers of beta-carotene // Faseb J. 1994. V. 8. № 12. P. 968–973. https://doi.org/10.1096/fasebj.8.12.8088462
  11. Babu R., Rojas N.P., Gao S. et al. Validation of the effects of molecular marker polymorphisms in LcyE and CrtRB1 on provitamin A concentrations for 26 tropical maize populations // Theor. Appl. Genet. 2013. V. 126. P. 389–399. https://doi.org/10.1007/s00122-012-1987-3
  12. Baveja A., Muthusamy V., Panda K.K. et al. Development of multinutrient-rich biofortified sweet corn hybrids through genomics-assisted selection of shrunken2, opaque2, lcyE and crtRB1 genes // J. Appl. Genet. 2021. V. 62. № 3. P. 419–429. https://doi.org/10.1007/s13353-021-00633-4
  13. Bai L., Kim E.H., DellaPenna D., Brutnell T.P. Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis // Plant J. 2009. V. 59. № 4. P. 588–599. https://doi.org/10.1111/j.1365-313X.2009.03899.x
  14. Yu B., Lydiate D.J., Young L.W. et al. Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase // Transgenic Res. 2008. V. 17. № 4. P. 573–585. https://doi.org/10.1007/s11248-007-9131-x
  15. Diretto G., Tavazza R., Welsch R. et al. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase // BMC Plant Biol. 2006. V. 6. Р. 13. https://doi.org/10.1186/1471-2229-6-6
  16. Pogson B.J., Rissler H.M. Genetic manipulation of carotenoid biosynthesis and photoprotection // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000. V. 355. № 1402. P. 1395–1403. https://doi.org/10.1098/rstb.2000.0701
  17. Richaud D., Stange C., Gadaleta A. et al. Identification of lycopene epsilon cyclase (lcyE) gene mutants to potentially increase β-carotene content in durum wheat (Triticum turgidum L. ssp. durum) through TILLING // PLoS One. 2018. V. 13. № 12: e0208948. https://doi.org/10.1371/journal.pone.0208948
  18. Yan J., Kandianis B.C., Harjes E.C. et al. Rare genetic variation at Zea mays crtRB1 increases beta carotene in maize grain // Nat. Genet. 2010. V. 42. P. 322–327. https://doi.org/10.1038/ng.551
  19. Liu L., Jeffers D., Zhang Y. et al. Introgression of the crtRB1 gene into quality protein maize inbred lines using molecular markers // Mol. Breed. 2015. V. 35. № 8: 154. https://doi.org/10.1007/s11032-015-0349-7
  20. Muthusamy V., Hossain F., Thirunavukkarasu N. et al. Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele // PLoS One. 2014. V. 9. № 12. Р. e11583. https://doi.org/10.1371/journal.pone.0113583
  21. Дьяченко Е.А., Слугина М.А. Внутривидовой полиморфизм гена сахарозосинтазы Sus1 у образцов Pisum sativum L. // Вавилов. журн. генет. и селекции. 2018. Т. 22. № 1. С. 108–114. https://doi.org/10.18699/VJ18.338
  22. Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets // Mol. Biol. Evol. 2016. V. 33. № 7. P. 1870–1874. https://doi.org/10.1093/molbev/msw054
  23. Lescot M. PlantCARE, a database of plant cis – acting regulatory elements and a portal to tools for in silico analysis of promoter sequences // Nucl. Ac. Res. 2002. V. 30. P. 325–327. https://doi.org/10.1093/nar/30.1.325
  24. Li F., Vallabhaneni R., Wurtzel E.T. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress – induced root carotenogenesis // Plant Physiol. 2008. V. 146. P. 1333–1345. https://doi.org/10.1104/pp.107.111120
  25. Dibari B., Murat F., Chosson A. et al. Deciphering the genomic structure, function and evolution of carotenogenesis related phytoene synthases in grasses // BMC Genomics. 2012. V. 13. Р. 221. https://doi.org/10.1186/1471-2164-13-221
  26. Vatov E., Ludewig U., Zentgraf U. Disparate dynamics of gene body and cis-regulatory element evolution illustrated for the senescence-associated cysteine protease gene SAG12 of plants // Plants (Basel). 2021. V. 10. № 7: 1380. https://doi.org/10.3390/plants10071380
  27. Bai J.F., Wang Y.K., Guo L.P. et al. Genomic identification and characterization of MYC family genes in wheat (Triticum aestivum L.) // BMC Genomics. 2019. V. 20. № 1. Article 1032. https://doi.org/10.1186/s12864-019-6373-y

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (151KB)
3.


© Д.Х. Архестова, Г.И. Ефремов, С.П. Аппаев, Е.З. Кочиева, А.В. Щенникова, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».