Исследование генетической дифференциации островных и материковых популяций полевой мыши (Apodemus agrarius Pallas, 1771) посредством анализа полиморфизма микросателлитов
- Авторы: Фрисман Л.В.1, Богданов А.С.2, Шереметьева И.Н.3, Картавцева И.В.3, Павленко М.В.3, Родимцева Д.В.1, Шефтель Б.И.4, Лебедев В.С.5, Ковальская Ю.М.4
-
Учреждения:
- Институт комплексного анализа региональных проблем Дальневосточного отделения Российской академии наук
- Институт биологии развития им. Н.К. Кольцова Российской академии наук
- Федеральный научный центр биоразнообразия наземной биоты Восточной Азии Дальневосточного отделения Российской академии наук
- Институт проблем экологии и эволюции им. А.Н. Северцова Российской академии наук
- Научно-исследовательский зоологический музей МГУ им. М.В. Ломоносова
- Выпуск: Том 61, № 5 (2025)
- Страницы: 41-56
- Раздел: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://journal-vniispk.ru/0016-6758/article/view/296520
- DOI: https://doi.org/10.31857/S0016675825050046
- EDN: https://elibrary.ru/tmmdlb
- ID: 296520
Цитировать
Аннотация
На основе микросателлитного анализа (по шести локусам) проведена оценка аллельного разнообразия и уровня генетической дифференциации популяций полевой мыши Apodemus agrarius в разных частях ареала вида. Исследованы полевые мыши четырех островов залива Петра Великого (Японское море), а также выборки из популяций крупных изолированных материковых массивов – восточного (шесть выборок из локалитетов юга Дальнего Востока России, одна сборная выборка из центральной части Китая) и западного (одна сборная выборка из Белгородской области). В островных и материковых популяциях обнаружено большое количество общих микросателлитных аллелей (62 из 84 выявленных). В островных популяциях по сравнению с континентальными наблюдаются обеднение аллельного состава и бóльшая мозаичность частот аллелей, в том числе уникальных. Полученные данные указывают на более высокий уровень дифференциации популяций полевых мышей на островах, отделенных проливами от материка и друг от друга в Голоцене, по сравнению с дифференциацией популяций обширных западного и восточного изолированных материковых массивов. Материковые изоляты генетически оказались дифференцированы друг от друга примерно в той же степени, что и пространственно разобщенные популяции юга Дальнего Востока России и Центрального Китая в пределах восточного изолята. Полученный результат предполагает относительно недавнее (возможно в период голоценового климатического оптимума) проникновение и быстрое распространение полевой мыши по территории Западной Сибири и Европы либо существование в истории вида нескольких «волн инвазий» в западном направлении.
Полный текст

Об авторах
Л. В. Фрисман
Институт комплексного анализа региональных проблем Дальневосточного отделения Российской академии наук
Автор, ответственный за переписку.
Email: l.frisman@mail.ru
Россия, Биробиджан, 679014
А. С. Богданов
Институт биологии развития им. Н.К. Кольцова Российской академии наук
Email: l.frisman@mail.ru
Россия, Москва, 119334
И. Н. Шереметьева
Федеральный научный центр биоразнообразия наземной биоты Восточной Азии Дальневосточного отделения Российской академии наук
Email: l.frisman@mail.ru
Россия, Владивосток, 690022
И. В. Картавцева
Федеральный научный центр биоразнообразия наземной биоты Восточной Азии Дальневосточного отделения Российской академии наук
Email: l.frisman@mail.ru
Россия, Владивосток, 690022
М. В. Павленко
Федеральный научный центр биоразнообразия наземной биоты Восточной Азии Дальневосточного отделения Российской академии наук
Email: l.frisman@mail.ru
Россия, Владивосток, 690022
Д. В. Родимцева
Институт комплексного анализа региональных проблем Дальневосточного отделения Российской академии наук
Email: l.frisman@mail.ru
Россия, Биробиджан, 679014
Б. И. Шефтель
Институт проблем экологии и эволюции им. А.Н. Северцова Российской академии наук
Email: l.frisman@mail.ru
Россия, Москва, 119071
В. С. Лебедев
Научно-исследовательский зоологический музей МГУ им. М.В. Ломоносова
Email: l.frisman@mail.ru
Россия, Москва, 125009
Ю. М. Ковальская
Институт проблем экологии и эволюции им. А.Н. Северцова Российской академии наук
Email: l.frisman@mail.ru
Россия, Москва, 119071
Список литературы
- Карасёва Е.В., Тихонова Г.Н., Богомолов П.Л. Ареал полевой мыши (Apodemus agrarius) в СССР и особенности обитания вида в его разных частях // Зоол. журн. 1992. Т. 71. Вып. 6. С. 106–115.
- Громов И.М., Ербаева М.А. Млекопитающие фауны России и сопредельных территорий. Зайцеобразные и грызуны. Санкт-Петербург, 1995. 522 с.
- Musser G.G., Carleton M.D. Superfamily Muroidea // Mammal Species of the World: A Taxonomic and Geographic Reference», 3d ed./eds Wilson D.E., Reeder D.M. Baltimore, MD: Johns Hopkins Univ. Press, 2005. Р. 894–1531.
- Khlyap L.A., Dinets V., Warshavsky A.A. et al. Aggregated occurrence records of the invasive alien striped field mouse (Apodemus agrarius Pall.) in the former USSR // Biodiversity Data J. 2021. V. 9. P. 1–19. https://doi.org/10.3897/BDJ.9.e69159
- Хляп Л.А. Apodemus agrarius Pallas, 1771. Полевая мышь // Самые опасные инвазионные виды России (ТОП-100) / Под ред. Дгебуадзе Ю.Ю., Петросян В.Г., Хляп Л.А. М.: Тов-во научн. изданий КМК, 2018. C. 595–603.
- Petrosyan V., Dinets V., Osipov F. et al. Range Dynamics of striped field mouse (Apodemus agrarius) in Northern Eurasia under global climate change based on ensemble species distribution models // Biology. 2023. V. 12. https://doi.org/10.3390/biology12071034
- Карасёва Е.В. Apodemus agrarius Pallas, 1771 – полевая мышь // Медицинская териология. Под ред. Кучерук В.В. М.: Наука, 1979. С. 194–203.
- Атопкин Д.М., Богданов А.С., Челомина Г.Н. Генетическая изменчивость и дифференциация полевой мыши Apodemus agrarius: результаты RAPD-PCR-анализа // Генетика. 2007. Т. 43. № 6. С. 804–817.
- Фрисман Л.В., Богданов А.С., Картавцева И.В. и др. Дифференциация континентальных изолятов полевой мыши (Apodemus agrarius Pallas, 1771) по микросателлитным локусам // Журн. общей биологии. 2019. Т. 80. № 4. С. 274–285. https://doi.org/10.1134/S0044459619040055.
- Latinne A., Navascues M., Pavlenko M. et al. Phylogeography of the striped field mouse (Apodemus agrarius) throughout the Palearctic Region // Mamm. Biology. 2020. P. 1–13. https://doi.org/10.1007/s42991-019-00001-0
- Yalkovskaya L., Sibiryakov P., Borodin A. Phylogeography of the striped field mouse (Apodemus agrarius Pallas, 1771) in light of new data from central part of Northern Eurasia // PLoS One. 2022. 17 (10). P. 1–17. https://doi.org/10.1371
- Suzuki H., Filippucci M., Chelomina G. et al. Biogeographic view of Apodemus in Asia and Europe inferred from nuclear and mitochondrial gene sequence // Biochem. Genet. 2008. V. 46. № 5–6. P. 329–346.
- Kozyra K., Zaja T., Ansorge H. et al. Late Pleistocene expansion of small murid rodents across the Palearctic in relation to the past environmental Changes // Genes. 2021. V. 12. № 4. P. 642–669.
- Kowalski K. Pleistocene rodents of Europe // Folia Quaternaria. 2001. V. 72. P. 3–389.
- Popov V. Pleistocene record of Apodemus agrarius (Pallas, 1771) (Mammalia: Rodentia) in the Magura Cave, Bulgaria // Acta Zool. Bulg. 2017. V. 69. № 1. P. 121–124.
- Велижанин А.Г. Время изоляции материковых островов северной части Тихого океана // Докл. АН СССР. 1976. Т. 231. № 1. С. 205–207.
- Omelko V.E., Kuzmin Y.V., Tiunov M.P. et al. Late Pleistocene and Holocene small mammal (Lipotyphla, Rodentia, Lagomorpha) remains from Medvezhyi Klyk cave in the Southern Russian Far East // Proc. Zool. Institute RAS. 2020. V. 324 (1). P. 124–145. https://doi.org/10.31610/trudyzin/2020.324.1.124
- Sakka H., Quéré J.P., Kartavtseva I. et al. Comparative phylogeography of four Apodemus species (Mammalia: Rodentia) in the Asian Far East: Evidence of Quaternary climatic changes in their genetic structure // Biol. J. Linnean Soc. 2010. V. 100. № 4. P. 797–821.
- Шереметьев И.С. Формирование наземной териофауны островов залива Петра Великого (Японское море) // Вестник ДВО РАН. 2001. № 4. C. 11–21.
- Aldjianabi S.M., Martinez I. Universal and rapid salt extraction of high quality genomic DNA for PCR based techniques // Nucl. Acids Res. 1997. V. 25. № 22. P. 4692–4693.
- Makova K.D., Patton J.C., Krysanov E.Yu. et al. Microsatellite markers in wood mouse and striped field mouse (genus Apodemus) // Mol. Ecol. 1998. V. 7. P. 247–255.
- Jo Y.S., Kim H.N., Baccus J.T., Jung J. Genetic differentiation of the Korean striped field mouse, Apodemus agrarius (Muridae, Rodentia), based on microsatellite polymorphism // Mammalia. 2016. V. 81. № 3. P. 1–11.
- Kimura M., Crow J.F. The number of alleles that can be maintained in a finite population // Genetics. 1964. V. 49. P. 725–738.
- Excoffier L.G., Laval C., Schneider S. Arlequin (version 3.0): An integrated software package for population genetics data analysis // Evol. Bioinform. 2005. V. 1. P. 47–50.
- Brookfield J.F.Y. A simple new method for estimating null allele frequency from heterozygote deficiency // Mol. Ecol. 1996. V. 5. P. 453–455.
- Chapuis M.-P., Estoup A. Microsatellite null alleles and estimation of population differentiation // Mol. Biol. Evol. 2007. V. 24. № 3. P. 621–631. https://doi.org/10.1093/molbev/msl191
- Cavalli-Sforza L.L., Edwards A.W.F. Phylogenetic analysis: Models and estimation procedures // Am. J. Hum. Genet. 1967. V. 19. P. 233–257.
- Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm // J. R. Stat. Soc. B. 1977. V. 39. Р. 1–38.
- Chakraborty R., De Andrade M., Daiger S.P., Budowle B. Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications // Ann. Hum. Genet. 1992. V. 56. P. 45–57.
- Swofford D.R., Selander R.B. Biosys-1: А FORTRAN program for the comprehensive analysis of electrophoretic data in population genetic and systematic // J. Heredity. 1981. V. 72. № 4. P. 281–283.
- Statistica 13 (18 и 19 TIBCO Software Inc.: Statistica 13. 2017. http://statistica.io)
- Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data // Genetics. 2000. V. 155. P. 945–959.
- Earl D.A., von Holdt B.M. STRUCTURE HARVESTER: А website and program for visualizing STRUCTURE output and implementing the Evanno method // Conservation Genet. Res. 2012. V. 4. № 2. Р. 359–361. https://doi.org/10.1007/s12686-011-9548-7
- Kopelman N.M., Mayzel J., Jakobsson M. et al. Clumpak: А program for identifying clustering modes and packaging population structure inferences across K // Mol. Ecol. Res. 2015. V. 15. P. 1179–1191.
- Фрисман Л.В., Шереметьева И.Н., Картавцева И.В. и др. Полиморфизм и уровень дифференциации островных и материковых популяций полевой мыши Apodemus agrarius юга Дальнего Востока России по данным анализа микросателлитов // Региональные проблемы. 2022. Т. 25. № 2. С. 3–15. https://doi.org/10.31433/2618-9593-2022-25-2-3-15
- Дарвин Ч. Происхождение видов путём естественного отбора или сохранение благоприятных рас в борьбе за жизнь. M.: Издательство «Аст», 2017. 608 с.
- Gillespie R.G., Claridge E.M., Roderick G.K. Biodiversity dynamics in isolated island communities: Interaction between natural and human-mediated processes // Mol. Ecol. 2008. V. 17. P. 45–57. https://doi.org/10.1111/J.1365-294X.2007.03466.X
- Шереметьева И.Н., Картавцева И.В., Павленко М.В. и др. Морфологическая и генетическая изменчивость малых островных популяций полевой мыши Apodemus agrarius Pallas, 1771 // Изв. РАН. Серия биологическая. 2017. № 2. C. 129–141.
- Хен Г.В. История открытия залива Петра Великого и океанографических исследований в Японском море до середины ХХ века // Изв. ТИНРО. 2020. Т. 200. Вып. 1. С. 3–23.
- Aguilar J.-P., Pélissié Т., Sigé В., Michaux J. Occurrence of the Stripe Field Mouse lineage (Apodemus agrarius Рallas 1771, Rodentia, Mammalia) in the Late Pleistocene of southwestern France // Comptes Rendus Palevol V. 7. I. 4. P. 217–225. https://doi.org/10.1016/j.crpv.2008.02.004
- Давид А.И., Чемыртан Г.Д. История развития териофауны Молдавии в голоцене // История биогеоценозов СССР в голоцене. М.: Наука, 1976. С. 207–213.
- Ивакина Н.В., Струкова Т.В., Бородин А.В., Стефановский В.В. Некоторые материалы по становлению современных экосистем Среднего и Южного Зауралья // Палеонтол. журн. 1997. № 3. С. 25–29.
- Богданов А.С., Мальцев А.Н., Котенкова Е.В. и др. Изменчивость фрагментов экзона 11 ядерного гена Brca1 и митохондриального гена Cox1 у домовых мышей Mus musculus // Мол. биология. 2020. Т. 54. № 2. С. 212–223.
Дополнительные файлы
