Study of genetic differentiation of island and mainland populations of the striped field mouse (Apodemus agrarius Pallas, 1771) by means of microsatellite polymorphism analysis
- Authors: Frisman L.V.1, Bogdanov A.S.2, Sheremetyeva I.N.3, Kartavtseva I.V.3, Pavlenko M.V.3, Rodimtseva D.V.1, Sheftel B.I.4, Lebedev V.S.5, Kovalskaya Y.M.4
-
Affiliations:
- Institute for Complex Analysis of Regional Problems, Far Eastern Branch, Russian Academy of Sciences
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
- Zoological Museum of the Lomonosov Moscow State University
- Issue: Vol 61, No 5 (2025)
- Pages: 41-56
- Section: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://journal-vniispk.ru/0016-6758/article/view/296520
- DOI: https://doi.org/10.31857/S0016675825050046
- EDN: https://elibrary.ru/tmmdlb
- ID: 296520
Cite item
Abstract
The allelic diversity and level of genetic differentiation of striped field Apodemus agrarius mouse populations in different parts of the species range were assessed based on 6 microsatellite loci. The study was performed on field mice from four islands of Peter the Great Bay (Sea of Japan), as well as samples from populations of large isolated continental massifs – eastern (6 samples from localities in the south of the Russian Far East and 1 combined sample from Central China). One combined sample from western isolate was analyzed too. A large number of common microsatellite alleles (62 of 84 identified) were found in island and mainland populations. In island populations, compared to continental populations, there is a depletion of the allelic composition and a greater mosaicism of allele frequencies, including unique ones. The obtained data indicate a higher level of differentiation of the striped field mouse populations on islands separated by straits from the mainland and from each other in the Holocene, compared to the differentiation of populations of vast western and eastern isolated continental massifs. Continental isolates were genetically differentiated from each other to approximately the same extent as spatially separated populations of the southern Far East and Central China within the eastern isolate. The obtained result suggests a relatively recent (possibly during the Holocene climatic optimum) penetration and rapid spread of the striped field mouse across Western Siberia and Europe, or the existence in the history of the species of several «waves of invasions» in the western direction.
Full Text

About the authors
L. V. Frisman
Institute for Complex Analysis of Regional Problems, Far Eastern Branch, Russian Academy of Sciences
Author for correspondence.
Email: l.frisman@mail.ru
Russian Federation, Birobidzhan, 679014
A. S. Bogdanov
Koltzov Institute of Developmental Biology, Russian Academy of Sciences
Email: l.frisman@mail.ru
Russian Federation, Moscow, 119334
I. N. Sheremetyeva
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences
Email: l.frisman@mail.ru
Russian Federation, Vladivostok, 690022
I. V. Kartavtseva
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences
Email: l.frisman@mail.ru
Russian Federation, Vladivostok, 690022
M. V. Pavlenko
Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences
Email: l.frisman@mail.ru
Russian Federation, Vladivostok, 690022
D. V. Rodimtseva
Institute for Complex Analysis of Regional Problems, Far Eastern Branch, Russian Academy of Sciences
Email: l.frisman@mail.ru
Russian Federation, Birobidzhan, 679014
B. I. Sheftel
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
Email: l.frisman@mail.ru
Russian Federation, Moscow, 119071
V. S. Lebedev
Zoological Museum of the Lomonosov Moscow State University
Email: l.frisman@mail.ru
Russian Federation, Moscow, 125009
Yu. M. Kovalskaya
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences
Email: l.frisman@mail.ru
Russian Federation, Moscow, 119071
References
- Карасёва Е.В., Тихонова Г.Н., Богомолов П.Л. Ареал полевой мыши (Apodemus agrarius) в СССР и особенности обитания вида в его разных частях // Зоол. журн. 1992. Т. 71. Вып. 6. С. 106–115.
- Громов И.М., Ербаева М.А. Млекопитающие фауны России и сопредельных территорий. Зайцеобразные и грызуны. Санкт-Петербург, 1995. 522 с.
- Musser G.G., Carleton M.D. Superfamily Muroidea // Mammal Species of the World: A Taxonomic and Geographic Reference», 3d ed./eds Wilson D.E., Reeder D.M. Baltimore, MD: Johns Hopkins Univ. Press, 2005. Р. 894–1531.
- Khlyap L.A., Dinets V., Warshavsky A.A. et al. Aggregated occurrence records of the invasive alien striped field mouse (Apodemus agrarius Pall.) in the former USSR // Biodiversity Data J. 2021. V. 9. P. 1–19. https://doi.org/10.3897/BDJ.9.e69159
- Хляп Л.А. Apodemus agrarius Pallas, 1771. Полевая мышь // Самые опасные инвазионные виды России (ТОП-100) / Под ред. Дгебуадзе Ю.Ю., Петросян В.Г., Хляп Л.А. М.: Тов-во научн. изданий КМК, 2018. C. 595–603.
- Petrosyan V., Dinets V., Osipov F. et al. Range Dynamics of striped field mouse (Apodemus agrarius) in Northern Eurasia under global climate change based on ensemble species distribution models // Biology. 2023. V. 12. https://doi.org/10.3390/biology12071034
- Карасёва Е.В. Apodemus agrarius Pallas, 1771 – полевая мышь // Медицинская териология. Под ред. Кучерук В.В. М.: Наука, 1979. С. 194–203.
- Атопкин Д.М., Богданов А.С., Челомина Г.Н. Генетическая изменчивость и дифференциация полевой мыши Apodemus agrarius: результаты RAPD-PCR-анализа // Генетика. 2007. Т. 43. № 6. С. 804–817.
- Фрисман Л.В., Богданов А.С., Картавцева И.В. и др. Дифференциация континентальных изолятов полевой мыши (Apodemus agrarius Pallas, 1771) по микросателлитным локусам // Журн. общей биологии. 2019. Т. 80. № 4. С. 274–285. https://doi.org/10.1134/S0044459619040055.
- Latinne A., Navascues M., Pavlenko M. et al. Phylogeography of the striped field mouse (Apodemus agrarius) throughout the Palearctic Region // Mamm. Biology. 2020. P. 1–13. https://doi.org/10.1007/s42991-019-00001-0
- Yalkovskaya L., Sibiryakov P., Borodin A. Phylogeography of the striped field mouse (Apodemus agrarius Pallas, 1771) in light of new data from central part of Northern Eurasia // PLoS One. 2022. 17 (10). P. 1–17. https://doi.org/10.1371
- Suzuki H., Filippucci M., Chelomina G. et al. Biogeographic view of Apodemus in Asia and Europe inferred from nuclear and mitochondrial gene sequence // Biochem. Genet. 2008. V. 46. № 5–6. P. 329–346.
- Kozyra K., Zaja T., Ansorge H. et al. Late Pleistocene expansion of small murid rodents across the Palearctic in relation to the past environmental Changes // Genes. 2021. V. 12. № 4. P. 642–669.
- Kowalski K. Pleistocene rodents of Europe // Folia Quaternaria. 2001. V. 72. P. 3–389.
- Popov V. Pleistocene record of Apodemus agrarius (Pallas, 1771) (Mammalia: Rodentia) in the Magura Cave, Bulgaria // Acta Zool. Bulg. 2017. V. 69. № 1. P. 121–124.
- Велижанин А.Г. Время изоляции материковых островов северной части Тихого океана // Докл. АН СССР. 1976. Т. 231. № 1. С. 205–207.
- Omelko V.E., Kuzmin Y.V., Tiunov M.P. et al. Late Pleistocene and Holocene small mammal (Lipotyphla, Rodentia, Lagomorpha) remains from Medvezhyi Klyk cave in the Southern Russian Far East // Proc. Zool. Institute RAS. 2020. V. 324 (1). P. 124–145. https://doi.org/10.31610/trudyzin/2020.324.1.124
- Sakka H., Quéré J.P., Kartavtseva I. et al. Comparative phylogeography of four Apodemus species (Mammalia: Rodentia) in the Asian Far East: Evidence of Quaternary climatic changes in their genetic structure // Biol. J. Linnean Soc. 2010. V. 100. № 4. P. 797–821.
- Шереметьев И.С. Формирование наземной териофауны островов залива Петра Великого (Японское море) // Вестник ДВО РАН. 2001. № 4. C. 11–21.
- Aldjianabi S.M., Martinez I. Universal and rapid salt extraction of high quality genomic DNA for PCR based techniques // Nucl. Acids Res. 1997. V. 25. № 22. P. 4692–4693.
- Makova K.D., Patton J.C., Krysanov E.Yu. et al. Microsatellite markers in wood mouse and striped field mouse (genus Apodemus) // Mol. Ecol. 1998. V. 7. P. 247–255.
- Jo Y.S., Kim H.N., Baccus J.T., Jung J. Genetic differentiation of the Korean striped field mouse, Apodemus agrarius (Muridae, Rodentia), based on microsatellite polymorphism // Mammalia. 2016. V. 81. № 3. P. 1–11.
- Kimura M., Crow J.F. The number of alleles that can be maintained in a finite population // Genetics. 1964. V. 49. P. 725–738.
- Excoffier L.G., Laval C., Schneider S. Arlequin (version 3.0): An integrated software package for population genetics data analysis // Evol. Bioinform. 2005. V. 1. P. 47–50.
- Brookfield J.F.Y. A simple new method for estimating null allele frequency from heterozygote deficiency // Mol. Ecol. 1996. V. 5. P. 453–455.
- Chapuis M.-P., Estoup A. Microsatellite null alleles and estimation of population differentiation // Mol. Biol. Evol. 2007. V. 24. № 3. P. 621–631. https://doi.org/10.1093/molbev/msl191
- Cavalli-Sforza L.L., Edwards A.W.F. Phylogenetic analysis: Models and estimation procedures // Am. J. Hum. Genet. 1967. V. 19. P. 233–257.
- Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm // J. R. Stat. Soc. B. 1977. V. 39. Р. 1–38.
- Chakraborty R., De Andrade M., Daiger S.P., Budowle B. Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications // Ann. Hum. Genet. 1992. V. 56. P. 45–57.
- Swofford D.R., Selander R.B. Biosys-1: А FORTRAN program for the comprehensive analysis of electrophoretic data in population genetic and systematic // J. Heredity. 1981. V. 72. № 4. P. 281–283.
- Statistica 13 (18 и 19 TIBCO Software Inc.: Statistica 13. 2017. http://statistica.io)
- Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data // Genetics. 2000. V. 155. P. 945–959.
- Earl D.A., von Holdt B.M. STRUCTURE HARVESTER: А website and program for visualizing STRUCTURE output and implementing the Evanno method // Conservation Genet. Res. 2012. V. 4. № 2. Р. 359–361. https://doi.org/10.1007/s12686-011-9548-7
- Kopelman N.M., Mayzel J., Jakobsson M. et al. Clumpak: А program for identifying clustering modes and packaging population structure inferences across K // Mol. Ecol. Res. 2015. V. 15. P. 1179–1191.
- Фрисман Л.В., Шереметьева И.Н., Картавцева И.В. и др. Полиморфизм и уровень дифференциации островных и материковых популяций полевой мыши Apodemus agrarius юга Дальнего Востока России по данным анализа микросателлитов // Региональные проблемы. 2022. Т. 25. № 2. С. 3–15. https://doi.org/10.31433/2618-9593-2022-25-2-3-15
- Дарвин Ч. Происхождение видов путём естественного отбора или сохранение благоприятных рас в борьбе за жизнь. M.: Издательство «Аст», 2017. 608 с.
- Gillespie R.G., Claridge E.M., Roderick G.K. Biodiversity dynamics in isolated island communities: Interaction between natural and human-mediated processes // Mol. Ecol. 2008. V. 17. P. 45–57. https://doi.org/10.1111/J.1365-294X.2007.03466.X
- Шереметьева И.Н., Картавцева И.В., Павленко М.В. и др. Морфологическая и генетическая изменчивость малых островных популяций полевой мыши Apodemus agrarius Pallas, 1771 // Изв. РАН. Серия биологическая. 2017. № 2. C. 129–141.
- Хен Г.В. История открытия залива Петра Великого и океанографических исследований в Японском море до середины ХХ века // Изв. ТИНРО. 2020. Т. 200. Вып. 1. С. 3–23.
- Aguilar J.-P., Pélissié Т., Sigé В., Michaux J. Occurrence of the Stripe Field Mouse lineage (Apodemus agrarius Рallas 1771, Rodentia, Mammalia) in the Late Pleistocene of southwestern France // Comptes Rendus Palevol V. 7. I. 4. P. 217–225. https://doi.org/10.1016/j.crpv.2008.02.004
- Давид А.И., Чемыртан Г.Д. История развития териофауны Молдавии в голоцене // История биогеоценозов СССР в голоцене. М.: Наука, 1976. С. 207–213.
- Ивакина Н.В., Струкова Т.В., Бородин А.В., Стефановский В.В. Некоторые материалы по становлению современных экосистем Среднего и Южного Зауралья // Палеонтол. журн. 1997. № 3. С. 25–29.
- Богданов А.С., Мальцев А.Н., Котенкова Е.В. и др. Изменчивость фрагментов экзона 11 ядерного гена Brca1 и митохондриального гена Cox1 у домовых мышей Mus musculus // Мол. биология. 2020. Т. 54. № 2. С. 212–223.
Supplementary files
