Секвенирование хлоропластного генома различных форм Triticum militinae Zhuk. et Migusch.

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Тетраплоидная пшеница Милитины (Triticum militinae Zhuk. et Migusch.) считалась некоторыми исследователями естественным голозерным мутантом пленчатой пшеницы T. timopheevii (Zhuk.) Zhuk. В настоящем исследовании сообщается о секвенировании и аннотировании хлоропластных геномов белоколосой (к-64829) и черноколосой (к-46007) форм T. militinae, размер которых составил 135899 и 136163 пн соответственно. Секвенирование проводилось на секвенаторе SURFSeq (GeneMind, Китай), сборка хлоропластных геномов осуществлялась с помощью программы NOVOWrap. Построенное на основе выравнивания полных хлоропластных геномов (пластомов) филогенетическое древо показало, что черноколосая форма T. militinae к-46007 близка к эволюционной линии Timopheevii, в то время как белоколосая к-64829 – к эволюционной линии Emmer, в том числе к виду Triticum persicum Vav. (син. T. carthlicum Nevski). Обсуждается вопрос о происхождении различных форм и линий T. militinae и об их аутентичности.

Об авторах

А. Р. Кулуев

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук

Email: kuluev.azat91@yandex.ru
Уфа, 450054 Россия

Р. Т. Матниязов

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук

Email: kuluev.azat91@yandex.ru
Уфа, 450054 Россия

Б. Р. Кулуев

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук

Email: kuluev.azat91@yandex.ru
Уфа, 450054 Россия

Л. Ю. Привалов

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук

Email: kuluev.azat91@yandex.ru
Уфа, 450054 Россия

А. В. Чемерис

Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук

Автор, ответственный за переписку.
Email: kuluev.azat91@yandex.ru
Уфа, 450054 Россия

Список литературы

  1. Жуковский П.М., Мигушова Э.Ф. Наиболее высокоиммунный эндемичный генофонд для выведения устойчивых сортов пшеницы путем отдаленной гибридизации // Вестник с.-х. науки. 1969. № 2. С. 9–20.
  2. Дорофеев В.Ф., Якубцинер М.М., Руденко М.И. и др. Пшеницы мира. Л.: Колос. 1976. 487 с.
  3. Наврузбеков Н.А. К происхождению Triticum militinae Zhuk. et Migusch. // Ботанические и генетические ресурсы флоры Дагестана. Махачкала: 1981. С. 121–122.
  4. Valdes B., Scholz H. The Euro+Med treatment of Gramineae – a generic synopsis and some new names // Willdenowia. 2006. V. 36. P. 657–669.
  5. Дорофеев В.Ф., Филатенко А.А., Мигушова Э.Ф. и др. Культурная флора СССР. Том I. Пшеница. Л.: Колос, 1979. 347 с.
  6. Badaeva E.D., Filatenko A.A., Badaev N.S. Cytogene- tic investigation of Triticum timopheevii (Zhuk.) Zhuk. and related species using the C-banding technique // Theor. Appl. Genetics. 1994. V. 89. P. 622–628. https://doi.org/10.1007/BF00222457
  7. Бадаева Е.Д., Богуславский Р.Л., Бадаев Н.С. Цитогенетическое исследование злаков. Тетраплоидные виды пшениц Зандури // Генетика. 1988. Т. 24. № 8. С. 1411–1418.
  8. Jakobson I., Peusha H.O., Timofejeva L., Jarve K. Adult plant and seedling resistance to powdery mildew in a Triticum aestivum × Triticum militinae hybrid line // Theor. Appl. Genet. 2006. V. 112. P. 760–769. https://doi.org/10.1007/s00122-005-0181-2
  9. Nataraj V., Vinod, Sharma J.B. et al. Molecular cha- racterization of Triticum militinae derived introgression lines carrying leaf rust resistance // Genet. Resour. Crop Evol. 2018. V. 65. P. 787–796. https://doi.org/10.1007/s10722-017-0572-7
  10. Janakova E., Jakobson I., Peusha H.O. et al. Divergence between bread wheat and Triticum militinae in the powdery mildew resistance QPm.tut-4A locus and its implications for cloning of the resistance gene // Theor. Appl. Genet. 2019. V. 132. № 4. P. 1061–1072. https://doi.org/10.1007/s00122-018-3259-3
  11. Chowdhury S., Bansal S., Jha S.K. et al. Characterization and identification of sources of rust resistance in Triticum militinae derivatives // Sci. Rep. 2024. V. 14. № 9408. https://doi.org/10.1038/s41598-024-59902-x
  12. Кулуев А.Р., Матниязов Р.Т., Кулуев Б.Р. и др. Секвенирование и аннотация хлоропластного генома Triticum militinae – “естественного мутанта” тетраплоидной пшеницы Triticum timopheevii Zhuk. // Генетика. 2024. Т. 60. № 8. С. 118–121. https://doi.org/10.31857/S0016675824080114
  13. Гончаров Н.П. Сравнительная генетика пшениц и их сородичей. Новосибирск: Гео, 2012. 523 с.
  14. Shi C., Hu N., Huang H. et al. An improved chloroplast DNA extraction procedure for whole plastid genome sequencing // PLoS One. 2012. V. 7. № 2. e31468. https://doi.org/10.1371/journal.pone.0031468
  15. Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014. V. 30. P. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
  16. Quinlan A.R., Hall I.M. Bedtools: A flexible suite of utilities for comparing genomic features // Bioinformatics. 2010. V. 26. № 6. P. 841–842. https://doi.org/10.1093/bioinformatics/btq033
  17. Li H., Handsaker B., Wysoker A., et al. The sequence alignment/map format and samtools // Bioinformatics. 2009. V. 25. № 16. P. 2078–2079. https://doi.org/10.1093/bioinformatics/btp352
  18. Wu P., Xu C., Chen H. et al. NOVOWrap: An automated solution for plastid genome assembly and structure standardization // Mol. Ecol. Resour. 2021. V. 21. № 6. P. 2177–2186. https://doi.org/10.1111/1755-0998.13410
  19. Shi L., Chen H., Jiang M. et al. CPGAVAS2, an integrated plastome sequence annotator and analyzer // Nucl. Acids Res. 2019. V. 47. № W1. P. W65–W73. https://doi.org/10.1093/nar/gkz345
  20. Zheng S., Poczai P., Hyvonen J. et al. Chloroplot: An online program for the versatile plotting of organelle genomes // Front. Genet. 2020. V. 11. P. 1–8. https://doi.org/10.3389/fgene.2020.576124
  21. Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability // Mol. Biol. Evol. 2013. V. 30. № 4. P. 772–780. https://doi.org/10.1093/molbev/mst010
  22. Waterhouse A.M., Procter J.B., Martin D.M.A. et al. Jalview version 2 – a multiple sequence alignment editor and analysis workbench // Bioinformatics. 2009. V. 25. № 9. P. 1189–1191. https://doi.org/10.1093/bioinformatics/btp033
  23. Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11 // Mol. Biol. Evol. 2021. V. 38. № 7. P. 3022–3027. https://doi.org/10.1093/molbev/msab120
  24. Kuluev A.R., Kuluev B.R., Mikhaylova E.V., Cheme- ris A.V. Sequencing and analysis of complete chloroplast genomes of einkorn wheats Triticum sinskajae and Triticum monococcum accession k-20970 // Genet. Resour. Crop. Evol. 2024. V. 71. P. 3347–3360. https://doi.org/10.1007/s10722-023-01843-x
  25. Feldman M., Levy A.A. Wheat Evolution and Domestication. Springer, 2023. 673 p. https://doi.org/10.1007/978-3-031-30175-9
  26. Нужная Т.В., Веселова С.В., Бурханова Г.Ф., Максимов И.В. Первичный поиск новых источников эффективной устойчивости среди представителей рода Triticum L. к возбудителю септориоза Stagonospora nodorum Berk. // Biomics. 2022. Т. 14. № 3. С. 227–233. https://doi.org/10.31301/2221-6197.bmcs.2022-17
  27. Пеуша Х.О., Шнайдер (Энно) T.M. Скрещиваемость мягкой пшеницы с близкородственными видами // Изв. АН Эстонской ССР. 1983. T. 32. № 4. С. 241–244.
  28. Пеуша Х.О., Штефан У., Хсам С.Л.К. et al. Идентификация генов устойчивости к мучнистой росе у мягкой пшеницы (Triticum aestivum L.). IV. Селекционные линии, происходящие от отдаленных скрещиваний российских сортов с видами Triticum timopheevii Zhuk., T. militinae Zhuk. et Migush., T. dicoccum (Schrank.) Schuebl., Aegilops speltoides Tausch. // Генетика. 1995. Т. 31. № 2. С. 212–218.
  29. Кожахметов К.К., Бастаубаева Ш.О., Жаката- ева А.Н. и др. Использование генофонда диких сородичей для улучшения мягкой пшеницы в органическом земледелии // Izdenister natigeler (Исследования, результаты). 2024. № 2–1 (special). С. 158–172. https://doi.org/10.37884/2-1-2024/551
  30. Abugalieva A.I., Savin T.V., Kozhahmetov K.K., Morgounov A.I. Registration of wheat germplasm originating from wide crosses with superior agronomic performance and disease resistance // J. Plant Regist. 2021. V. 15. P. 206–214. https://doi.org/10.1002/plr2.20105
  31. Жиров Е.Г. Геномы пшеницы: исследование и перестройка: Автореф. дис. д-ра биол. наук. Киев, 1989. С. 1–36.
  32. Давоян Р.О., Бебякина И.В., Давоян О.Р. и др. Синтетические формы как основа для сохранения и использования генофонда диких сородичей мягкой пшеницы // Вавил. журнал генетики и селекции. 2012. Т. 16. № 1. С. 44–51.
  33. Golovnina K.A., Glushkov S.A., Blinov A.G. et al. Molecular phylogeny of genus Triticum L. // Plant Syst. Evol. 2007. V. 264. № 3/4. P.195–216. https://doi.org/10.1007/s00606-006-0478-x
  34. Badaeva E.D., Konovalov F.A., Knüpffer H. et al. Genetic diversity, distribution and domestication history of the neglected GGAtAt genepool of wheat // Theor. Appl. Genet. 2021. V. 135. P. 755–776. https://doi.org/10.1007/s00122-021-03912-0
  35. Кулуев А.Р., Матниязов Р.Т., Кулуев Б.Р., Чеме- рис А.В. Triticum militinae Zhuk. et Migusch. – точно не мутант T. timopheevii Zhuk., как считалось долгие годы // Biomics. 2023. Т. 15. № 3. С. 213–217. https://doi.org/10.31301/2221-6197.bmcs.2023-19
  36. Апель В.И., Латыпов А.З. О факторах возникновения нового вида в условиях Белоруссии // В сб.: Генетика и селекция растений. Горки, 1974. Т. 129. С. 18–21.
  37. Апель В.И., Моисеев В.П. Генетические особенности T. militinae v. albimilitinae и ее селекционно-хозяйственная характеристика // Селекция и семеноводство зерновых и зернобобовых культур. Сборник науч. трудов. Вып. 89. Минск, 1982. С. 18–24.
  38. Szalay D. Triticum timopheevi Zhuk. with short, close-packed spikes // Acta Agronomica Acad. Sci. Hunga- ricae. 1977. V. 26. № 1/2. P. 181–187.
  39. Ерицян А.А. Цитогенетическое исследование T. timopheevi Zhuk. // Труды Тбилисского бот. института. 1941. T. 8. С. 211–272.
  40. Grewal S., Yang Cy., Scholefield D. et al. Chromosome-scale genome assembly of bread wheat’s wild relative Triticum timopheevii // Sci. Data. 2024. V. 11. № 420. P. 1–11. https://doi.org/10.1038/s41597-024-03260-w

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».