Voimakan deposit of dolomite type nephrite, Middle-vitim mountain country: formation conditions
- Authors: Kislov E.V.1, Goncharuk I.S.1,2, Vanteev V.V.1, Posokhov V.F.1
-
Affiliations:
- N.L. Dobretsov Geological Institute SB RAS
- D. Banzarov Buryat State University, Institute of Natural Sciences
- Issue: Vol 66, No 6 (2024)
- Pages: 648-667
- Section: Articles
- URL: https://journal-vniispk.ru/0016-7770/article/view/273382
- DOI: https://doi.org/10.31857/S0016777024060044
- EDN: https://elibrary.ru/wdwqgs
- ID: 273382
Cite item
Abstract
The Voimakan deposit of dolomite type nephrite has been investigated in order to clarify the features of its formation. 12 samples of nephrite and 5 samples of host rocks were studied. A binocular stereomicroscope, a gemological flashlight and a polarizing petrographic microscope were used. The contents of macro- and micro-components, the isotopic composition of oxygen were determined. Nephrite is light salad, salad, gray-salad and brown (honey). It forms separations in calcite-tremolite skarn bodies at the contact of dolomite marble and amphibolite transformed into epidote-tremolite skarn. The value of δ 18 O of nephrite is –18.5 ÷ –18.8%; calcite-tremolite skarn –17.4%; epidote-tremolite scarn –4.4, 2.6%; dolomite 26.1%. Nephrite meets the requirements for gemstone raw materials. Diopsidite with nephrite lenses and interlayers can be used for carving multicolored products or inlays. The green shade of nephrite increases with an increase in the Fe 2+ content. The brown color of nephrite is determined by Fe 3+ in the tremolite structure. The dolomite type of nephrite is confirmed by the ratio of Mg and Fe, a reduced content of Cr, Ni, Co, an increased content of F and the ratio of Sr to Ba, and the nature of the REE distribution. The distribution of REE in nephrite is determined by the composition of the initial dolomite under the influence of epidote-tremolite scarn. The source of abnormally isotopically light oxygen of nephrite is a meteoric fluid depleted in 18 O as a result of dolomite decarbonation. Granite only provides regional heating, activating the fluid. Both metasomatic and metamorphic processes were involved in the nephrite formation and transformation. The formation of nephrite is associated with the formation of calcite-tremolite and epidote-tremolite skarns. Tectonic stresses caused the crushing of rocks, facilitating the penetration of fluid, provided the formation of a nephrite cryptocrystalline tangled fibrous structure. But further regressive metamorphism led to the development of chlorite and talc, which worsened the nephrite quality.
Full Text

About the authors
E. V. Kislov
N.L. Dobretsov Geological Institute SB RAS
Author for correspondence.
Email: evg-kislov@ya.ru
Russian Federation, 6a Sakhyanova str., Ulan-Ude, 670047
I. S. Goncharuk
N.L. Dobretsov Geological Institute SB RAS; D. Banzarov Buryat State University, Institute of Natural Sciences
Email: goncarukirina993@gmail.com
Russian Federation, 6a Sakhyanova str., Ulan-Ude, 670047; 24a Smolina str., Ulan-Ude, 670000
V. V. Vanteev
N.L. Dobretsov Geological Institute SB RAS
Email: vanteev997@mail.ru
Russian Federation, 6a Sakhyanova str., Ulan-Ude, 670047
V. F. Posokhov
N.L. Dobretsov Geological Institute SB RAS
Email: vitaf1@yandex.ru
Russian Federation, 6a Sakhyanova str., Ulan-Ude, 670047
References
- Акимова Е.Ю., Козлов Е.Н., Лохов К.И. Происхождение корундовых пород Беломорского подвижного пояса по данным геохимии изотопов благородных газов // Геохимия. 2017. № 11. С. 1015–1026. https://doi.org/10.7868/S0016752517110024
- Бурцева М.В., Рипп Г.С., Посохов В.Ф., Зяблицев А.Ю., Мурзинцева А.Е. Источники флюидов, формировавших нефритовые породы южного складчатого обрамления Сибирского кратона // Доклады Академии наук. 2015 1 . Т. 460. № 3. С. 324–328. https://doi.org/10.7868/S0869565215030184
- Бурцева М. В., Рипп Г.С., Посохов В.Ф., Мурзинцева А.Е. Нефриты Восточной Сибири: геохимические особенности и проблемы генезиса // Геология и геофизика. 2015 2 . Т. 56. № 3. С. 516–527. https://doi.org/10.15372/GiG20150303
- Высоцкий С.В., Игнатьев А.В., Левицкий В.И., Нечаев В.П., Веливецкая Т.А ., Яковенко В.В. Геохимия стабильных изотопов кислорода и водорода корундоносных пород и минералов Северной Карелии как индикатор необычных условий формирования // Геохимия . 2014. № 9. С. 843–853. https://doi.org/10.7868/S0016752514090106
- Гомбоев Д.М., Андросов П.В., Кислов Е.В. Кавоктинское месторождение светлоокрашенного нефрита: условия залегания и особенности вещественного состава // Разведка и охрана недр. 2017. № 9. С. 44–50.
- Дубинина Е. О., Перчук А.Л., Корепанова О.С. Изотопнокислородные эффекты при дегидратации глаукофанового сланца: экспериментальные данные при РТ -условиях зоны субдукции // Доклады Академии наук. 2012. Т. 444. № 5. С. 534–538.
- Кислов Е.В., Худякова Л.И., Николаев А.Г. Отходы переработки аподоломитового нефрита и направление их использования // Горные науки и технологии. 2023. Т. 8. № 2. С. 195–206. https://doi.org/10.17073/2500-0632-2023-01-75
- Лохов К.И., Прасолов Э .М., Акимова Е.Ю., Лохов Д.К., Бушмин С.А. Изотопно и элементно фракционированные He, Ne и Ar во флюидных включениях минералов метаморфических пород Северной Карелии с аномальным изотопно легким кислородом: фракционирование изотопов в эндогенном флюиде по механизму термодиффузии с каскадированием // Вестник СПбГУ. Сер. 7. 2016. № 1. С. 29–47.
- Сутурин А.Н., Замалетдинов Р.С., Секерина Н.В. Месторождения нефритов. Иркутск: Изд-во ИГУ, 2015. 377 с.
- Технические условия ТУ 41-07-052-90. Камни цветные природные в сырье. М.: Кварцсамоцветы, 1990. 28 с.
- Филиппова А.А., Мехоношин А.С., Бычинский В.А., Чудненко К.В. Физико-химические особенности флюидов, сформировавших апогипербазитовые и апокарбонатные нефриты // Известия Томского политехнического университета. Инжиниринг георесурсов. 2021. Т. 332. № 3. С. 168–178. doi: 10.18799/24131830/2021/03/3112
- Adamo I., Bocchio R. Nephrite jade from Val Malenco, Italy: Review and Update // Gems and Gemology. 2013. V. 49. № 2. P. 98–106. https://doi.org/10.5741/GEMS.49.2.98
- Bai F., Li G., Lei J., Sun J. Mineralogy, geochemistry, and petrogenesis of nephrite from Panshi, Jilin, Northeast China // Ore Geol. Rev. 2019. V. 115. P. 103171. https://doi.org/10.1016/j.oregeorev.2019.103171
- Bai B., Du J., Li J., Jiang B. Mineralogy, geochemistry, and petrogenesis of green nephrite from Dahua, Guangxi, Southern China // Ore Geol. Rev. 2020. V. 118. P. 103362. https://doi.org/10.1016/j.oregeorev.2020.103362
- Biagioni C., Bosi F., Hålenius U., Pasero M. The crystal structure of svabite, Ca 5 (AsO 4 ) 3 F, an arsenate member of the apatite supergroup // American Mineralogist. 2016. V. 101, № 8. P. 1750–1755; https://doi.org/10.2138/am-2016-5636
- Chen D., Yang Y., Qiao B., Li J., Luo W. Integrated interpretation of pXRF data on ancient nephrite artifacts excavated from Tomb No. 1 in Yuehe Town, Henan Province, China // Heritage Science. 2022. V. 10. P. 1. https://doi.org/10.1186/s40494-021-00642-w
- Feng Y., He X., Jing Y. A new model for the formation of nephrite deposits: A case study of the Chuncheon nephrite deposit, South Korea // Ore Geol. Rev. 2022. V. 141. 104655. https://doi.org/10.1016/j.oregeorev.2021.104655
- Fu W.-l., Lu H., Chai J., Sun Z.-y. Spectroscopic Characteristics of Longxi Nephrite From Sichuan and Its Color Genesis // Spectroscopy and spectral analysis. 2023. V. 43. № 5. P. 1408–1412. https://doi.org/10.3964/j.issn.1000-0593(2023)05-1408-05 (In Chinese with English abstract)
- Gao K., Shi G., Wang M., Xie G., Wang J., Zhang X., Fang T., Lei W., Liu Y. The Tashisayi nephrite deposit from South Altyn Tagh, Xinjiang, northwest China // Geoscience Frontiers. 2019 1 . V. 10. № 4. P. 1597–1612. https://doi.org/10.1016/j.gsf.2018.10.008
- Gao S., Bai F., Heide G. Mineralogy, geochemistry and petrogenesis of nephrite from Tieli, China // Ore Geo. Rev. 2019 2 . V. 107. P. 155–171. https://doi.org/10.1016/j.oregeorev.2019.02.016
- Gao K., Fang T., Lu T., Lan Y., Zhang Y., Wang Y., Chang Y. Hydrogen and oxygen stable isotope ratios of dolomite-related nephrite: relevance for its geographic origin and geological significance // Gems and Gemology. 2020. V. 56. № 2. P. 266–280. http://dx.doi.org/10.5741/GEMS.56.2.266
- Gil G., Barnes J.D., Boschi C. Nephrite from Złoty stok (Sudetes, SW Poland): petrological, geochemical, and isotopic evidence for a dolomite-related origin // Canadian Mineralogist. 2015. V. 53. P. 533–556. https://doi.org/10.3749/canmin.1500018
- Gil G., Bagiń ski B., Gunia P., Madej S., Sachanbiński M., Jokubauskas P., Belka Z. Comparative Fe and Sr isotope study of nephrite deposits hosted in dolomitic marbles and serpentinites from the Sudetes, SW Poland: Implications for Fe-As-Au-bearing skarn formation and post-obduction evolution of the oceanic lithosphere // Ore Geo. Rev. 2020. V. 118. P. 103335. https://doi.org/10.1016/j.oregeorev.2020.103335
- Gong N., Wang C., Xu S. Color Origin of Greyish-Purple Tremolite Jade from Sanchahe in Qinghai Province, NW China // Minerals. 2023. V. 13. P. 1049. https://doi.org/10.3390/min13081049
- Jiang B., Bai F., Zhao J. Mineralogical and geochemical characteristics of green nephrite from Kutcho, northern British Columbia, Canada // Lithos. 2021. V. 388-389. 106030. https://doi.org/10.1016/j.lithos.2021.106030
- Jiang T., Shi G., Ye D., Zhang X., Zhang L., Han H. A New Type of White Nephrite from Limestone Replacement along the Kunlun–Altyn Tagh Mountains: A Case from the Mida Deposit, Qiemo County, Xinjiang, China // Crystals. 2023. V. 13. P. 1677. https://doi.org/10.3390/cryst13121677
- Jiang Y., Shi G., Xu L., Li X. Mineralogy and geochemistry of nephrite jade from Yinggelike deposit, Altyn Tagh (Xinjiang, NW China) // Minerals. 2020. V. 10, № 5. P. 418. https://doi.org/10.3390/min10050418
- Jing Y., Liu Y. Genesis and mineralogical studies of zircons in the Alamas, Yurungkash and Karakash Rivers nephrite deposits, Western Kunlun, Xinjiang, China // Ore Geol. Rev. 2022. V. 149. P. 105087. https://doi.org/10.1016/j.oregeorev.2022.105087
- Korybska-Sadło I., Gil G., Gunia P., Horszowski M., Sitarz M. Raman and FTIR spectra of nephrites from the Złoty Stok and Jordanów Śląski (the Sudetes and Fore-Sudetic Block, SW Poland) // Journal of Molecular Structure. 2018. V. 1166. P. 40–47. https://doi.org/10.1016/j.molstruc.2018.04.020
- Li P., Liao Z., Zhou Zh., Wu Q. Evidences from infrared and Raman spectra: Xiaomeiling is one reasonable provenance of nephrite materials used in Liangzhu Culture // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021. V. 261. P. 120012. https://doi.org/10.1016/j.saa.2021.120012
- Li P., Liao Z., Zhou Zh. The residual geological information in Liangzhu jades: Implications for their provenance // Proceedings of the Geologists’ Association. 2022. V. 133. № 3. P. 256–268. https://doi.org/10.1016/j. pgeola.2022.04.003
- Li N., Bai F., Xu L., Che Y. Geochemical characteristics and ore-forming mechanism of Luodian nephrite deposit, Southwest China and comparison with other nephrite deposits in Asia // Ore Geo. Rev. 2023 1 . V. 160. P. 105604. https://doi.org/10.1016/j.oregeorev.2023.105604
- Li N., Bai F., Peng Q., Liu M. Geochemical Characteristics of Nephrite from Chuncheon, South Korea: Implications for Geographic Origin Determination of Nephrite from Dolomite-Related Deposits // Crystals. 2023 2 . V. 13. P. 1468. https://doi.org/10.3390/cryst13101468
- Liang H., Shi G., Yuan Y., Cao C., Sun X., Zhang X. Polysynthetic twinning of diopsides in the Niewang and Tatliksu nephrite deposits, Xinjiang, China // Minerals. 2022. V. 12, № 12. P. 1575. https://doi.org/10.3390/min12121575
- Ling X.-X., Schmädicke E., Li Q.-L., Gose J., Wu R.-Y., Wang S.-Q., Liu Y., Tang G.-C., Li X.-H. Age determination of nephrite by in-situ SIMS U-Pb dating syngenetic titanite: A case study of the nephrite deposit from Luanchuan, Henan, China // Lithos. 2015. V. 220–223. P. 289–299. https://doi.org/10.1016/j.lithos.2015.02.019
- Liu Y., Deng J., Shi G.H., Lu T., He H., Ng Y.-N., Shen C., Yang L., Wang Q. Chemical Zone of Nephrite in Alamas, Xinjiang, China // Resource Geology. 2010. V. 60, № 3. P. 249–259. https://doi.org/10.1111/j.1751-3928.2010.00135.x
- Liu Y., Deng J., Shi G., Sun X., Yang L. Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China // Journal of Asian Earth Sciences. 2011 1 . V. 42. № 3. P. 440–451. https://doi.org/10.1016/j.jseaes.2011.05.012
- Liu Y., Deng J., Shi G., Sun X., Yang L. Geochemistry and petrogenesis of placer nephrite from Hetian, Xinjiang, Northwest China // Ore Geol. Rev. 2011 2 . V. 41. № 1. P. 122–132. https://doi.org/10.1016/j. oregeorev.2011.07.004
- Liu Y., Zhang R., Zhang Zh., Shi G., Zhang Q., Abuduwayiti M., Liu J. Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite: Implications for the genesis of a magnesian skarn deposit // Lithos. 2015. V. 212–215. P. 128–144. https://doi.org/10.1016/j.lithos.2014.11.002
- Liu Y., Zhang R.-Q., Abuduwayiti M., Wang C., Zhang S., Shen C., Zhang Z., He M., Zhang Y., Yang X. SHRIMP U-Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, northwest China: Implication for a Magnesium Skarn // Ore Geol. Rev. 2016. V. 72. № 1. P. 699–727. https://doi.org/10.1016/j.oregeorev.2015.08.023
- Liu X.-F., Liu Y., Li Z.-J., Maituohuti A., Tian G.-Y., Guo D.-X. The genesis and SHRIMP U-Pb zircon dating of the Pishan brown nephrite bearing Mg-skarn deposit in Xinjiang // Acta Petrologica et Mineralogica. 2017. V. 36. № 2. P. 259 Ore Geo 273 (In Chinese with English abstract).
- Liu X., Gil G., Liu Y., He X., Syczewski M., Bagi´nski B., Fang T., Shu X. Timing of formation and cause of coloration of brown nephrite from the Tiantai Deposit, South Altyn Tagh, northwestern China // Ore Geol. Rev. 2021. V. 131. P. 103972. https://doi.org/10.1016/j.oregeorev.2020.103972
- Nangeelil K., Dimpfl P., Mamtimin M., Huang S., Sun Z. Preliminary study on forgery identification of Hetian Jade with Instrumental Neutron Activation Analysis // Applied Radiation and Isotopes. 2023. V. 191. P. 110535. https://doi.org/10.1016/j.apradiso.2022.110535
- Nichol D. Two contrasting nephrite jade types // Journal of Gemmology. 2000. V. 27. № 4. P. 193–200.
- Sharp Z.D. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides // Geochim. Cosmochim. Acta. 1990. V. 54. P. 1353–1357.
- Siqin B., Qian R., Zhou S.J., Gan F.X., Dong M., Hua Y.F. Glow discharge mass spectrometry studies on nephrite minerals formed by different metallogenic mechanisms and geological environments // Int. J. Mass Spectrom. 2012. V. 309. P. 206–211. https://doi.org/10.1016/j.ijms.2011.10.003
- Siqin B., Qian R., Zhuo S.J., Gao J., Jin J., Wen Z.Y. Studies of rare earth elements to distinguish nephrite samples from different deposits using direct current glow discharge mass spectrometry // J. Anal. At. Spectrom. 2014. V. 29. P. 2064–2071. https://doi.org/10.1039/c4ja00172a
- Su Y., Yang M. Combining Rare Earth Element Analysis and Chemometric Method to Determine the Geographical Origin of Nephrite // Minerals. 2022. V. 12. P. 1399. https://doi.org/10.3390/min12111399
- Tan T.L., Ng N.N., Lim N.C. Studies on nephrite and jadeite jades by Fourier transform infarred (FTIR) and Raman spectroscopic techniques // Cosmos. 2013. V. 9. № 1. P. 47–56. https://doi.org/10.1142/S0219607713500031
- Vysotskiy S.V., Nechaev V.P., Kissin A.Y., Yakovenko V.V., Ignat’ev A.V., Velivetskaya T.A., Sutherland F.L., Agoshkov A.I. Oxygen isotopic composition as an indicator of ruby and sapphire origin: A review of Russian occurrences // Ore Geol. Rev. 2015. V. 68. P. 164–170. http://dx.doi.org/10.1016/j.oregeorev.2015.01.018
- Wang R., Shi X. Progress on the nephrite sources of jade artifacts in ancient China from the perspective of isotopes // Front. Earth Sci. 2022. V. 10. P. 1008387. https://doi.org/10.3389/feart.2022.1008387
- Wang L., Lin J.H., Ye T.P., Tan J., Wang B., Yang L. Discussing the coloration mechanism of Luodian Jade from Guizhou // Open Access Library Journal. 2020. V. 7. e6364. https://doi.org/10.4236/oalib.1106364
- Wang W., Liao Z., Zhou Z., Shang J., Li P., Cui D., Li L., Chen Q. Gemmological and mineralogical characteristics of nephrite from Longxi, Sichuang Province // J. of Gems and Gemmology. 2022. V. 24. № 1. P. 20–27. https://doi.org/10.15964/j.cnki.027jgg. 2022.01.003 (In Chinese with Englisg abstract).
- Xu H., Bai F. Origin of the subduction-related Tieli nephrite deposit in Northeast China: Constraints from halogens, trace elements, and Sr isotopes in apatite group minerals // Ore Geol. Rev. 2022. V. 142. P. 104702. https://doi.org/10.1016/j.oregeorev.2022.10470
- Xu H., Bai F., Jiang D. Geochemical characteristics and composition changes of tremolite at various stages in the mineralization process of nephrite from Tieli, Heilongjiang, Northeastern China // Arabian J. of Geosciences. 2021. V. 14. P. 204. https://doi.org/10.1007/s12517-021-06578-6
- Yin Z., Jiang C., Santosh M., Chen Y., Bao Y., Chen Q. Nephrite jade from Guangxi province, China // Gems and Gemology. V. 50. № 3. P. 228–235. https://doi.org/10.5741/GEMS.50.3.228
- Yu H., Wang R., Guo J., Li J., Yang X. Color-inducing elements and mechanisms in nephrites from Golmud, Qinghai, NW China: Insights from spectroscopic and compositional analyses // Journal of Mineralogical and Petrological Sciences. 2016 1 . V. 111, № 5. P. 313–325. https://doi.org/10.2465/jmps.151103
- Yu H.Y., Wang R.C., Guo J.C., Li J.G., Yang X.W. Study of the minerogenetic mechanism and origin of Qinghai nephrite from Golmud, Qinghai, Northwest China // Science China Earth Sciences. 2016 2 . V. 59. P. 1597–1609. https://doi.org/10.1007/s11430-015-0231-8
- Yui T.-F., Kwon S.-T. Origin of a dolomite-related jade deposit at Chuncheon, Korea // Economic Geology. 2002. V. 97. № 3. P. 593–601. https://doi.org/10.2113/gsecongeo.97.3.593
- Zhang C., Yu X., Jiang T. Mineral association and graphite inclusions in nephrite jade from Liaoning, northeast China: Implications for metamorphic conditions and ore genesis // Geoscience Frontiers. 2019. V. 10. № 2. P. 425–437. https://doi.org/10.1016/j.gsf.2018.02.009
- Zhang X., Shi G., Zhang X., Gao G. Formation of the nephrite deposit with five mineral assemblage zones in the Central Western Kunlun Mountains, China // J. of Petrology. 2022 1 . V. 63. P. 11. egac117. https://doi.org/10.1093/petrology/egac117
- Zhang X., Feng Y., Zhang Y., Maituohuti A. Characterization of Yellow-Green Hetian Jade in Qiemo-Ruoqiang, Xinjiang // Rock and Mineral Analysis. 2022 2 . V. 41. № 4. P. 586–597. https://doi.org/10.15898/j.cnki.11-2131/td.20211121018 (In Chinese with English abstract)
- Zhang C., Yang F., Yu X., Liu J., Carranza E.J.M., Chi J., Zhang P. Spatial-temporal distribution, metallogenic mechanisms and genetic types of nephrite jade deposits in China // Front. Earth Sci. 2023. V. 11. P. 1047707. https://doi.org/10.3389/feart.2023.1047707
- Zheng F., Liu Y., Zhang H.-Q. The petrogeochemistry and zircon U-Pb age of nephrite placer deposit in Xiuyan, Liaoning // Rock and Mineral Analysis. 2019. V. 38. № 4. P. 438–448. https://doi.org/10.15898/j.cnki.l1-2131/td.201807310089 (In Chinese with English abstract)
- Zheng J., Chen L., Zhang C., Liu Y., Tian R., Wu J., Wu Y., Zhang S. Constraints on Crystallinity of Graphite Inclusions in Nephrite Jade from Xinjiang, Northwest China: Implications for Nephrite Jade Formation Temperatures // Minerals. 2023. V. 13. P. 1403. https://doi.org/10.3390/min13111403
- Zhong Q., Liao Z., Qi L., Zhou Zh. Black nephrite jade from Guangxi, Southern China // Gems and Gemology. 2019. V. 55, No 2. P. 198–215. https://doi.org/10.5741/GEMS.55.2.198
Supplementary files
