Hydrothermal tin and tungsten deposits: historical aspects and present directions of research (to the 115th anniversary of O.D. Levitsky)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers the main results of the works by O.D. Levitsky in studying tin and tungsten deposits and their further development in the context of the evolution of the metallogenic theory. His input to the modern metallogenic classification of tin and tungsten deposits is recognized, with distinguishing the types of tungsten-polymetallic and tin-polymetallic deposits related to the intrusions of the deeply-derived mafic magma, in contrast to tin-tungsten deposits related to granitoid igneous suites dominantly of the crustal nature. According to the metallogenic views of O.D. Levitsky, a control of large tin and tungsten mineralized districts, as well as the deposits within these districts, by large “concealed” faults (“photolineaments”) was demonstrated, together with the relationships of the districts to the variously-sized “chamber” structures, with the characteristic leveled distribution of ore mineralization. The works by O.D. Levitsky paid significant attention to the mineral stages and zonation of tin and tungsten deposits, with distinguishing post-greisen stages of mineralization including quartz-tourmaline-chlorite metasomatites and later lower-temperature metasomatites comprising light micas, in contrast to greisens referred to as phyllic and carbonate-phyllic alteration. He justified a pulsing centrifugal “case-covering” mineral and ore zonation at some Sn deposits. A viewable place in the works by O.D. Levitsky is given to the peculiarities of mineral-forming fluid composition at Sn and W deposits, aggregate state of the fluids, and their evolution during the multi-stage ore formation. He paid particular attention to the existence of collomorphic cassiterite varieties, which are high-temperature and formed at the early stages of post-magmatic ore-formation. Some modern directions in studying tungsten and tin deposits are considered, including classification of Sn and W deposits and their positions in the series of related metallogenic types of ore deposits, possibility of the mantle sources of the productive magmatism, metals and fluids, some aspects of distinguishing hydrothermal stages related to the evolution of multi-phase magmatic intrusions, possible role of the “transmagmatic” fluids, and the aspects of unified systematics of hydrothermal-metasomatic formations at ore deposits.

Full Text

Restricted Access

About the authors

S. G. Soloviev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM)

Author for correspondence.
Email: serguei07@mail.ru
Russian Federation, Moscow

N. S. Bortnikov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM)

Email: serguei07@mail.ru
Russian Federation, Moscow

References

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Metallogenic scheme of Eastern Transbaikalia (according to S.S. Smirnov, A.V. Volkov, and others). 1–3 – metallogenic belts (1 – gold-molybdenum, 2 – tin-tungsten-rare metal, 3 – uranium-gold-copper-polymetallic); 4 – gold deposits; 5 – tungsten and tin deposits; 6 – intrusions of the Kukulbey complex; 7 – faults.

Download (492KB)
3. Fig. 2. Geological scheme of the Sherlovogorsk deposit in Eastern Transbaikalia (after D.O. Ontoev, 1974; L.V. Tauson et al., 1987; B.A. Gaivoronsky, 1995, with modifications). 1 - Quaternary alluvial deposits; 2 - Carboniferous sedimentary-volcanogenic rocks; 3 - Paleozoic igneous rocks; 4 - igneous breccias of quartz porphyry; 5 - quartz porphyry; 6 - granites of the Mesozoic (Late Jurassic) Kukulbey complex; 7 - biotite hornfelses, 8 - zones of quartz-topaz and quartz-muscovite greisens and subsequent quartz-muscovite metasomatites; 9 - zones of quartz-tourmaline greisens; 10 - faults; 11 – zone of predominant development of quartz-topaz greisens with wolframite and beryl; 12 – zone of predominant development of quartz-topaz, quartz-siderophyllite, quartz-fluorite greisens with cassiterite and sulfides; 13 – zone of predominant development of quartz-tourmaline greisens with cassiterite and arsenopyrite; 14 – zone of predominant development of quartz-sulfide veins and veinlets.

Download (185KB)
4. Fig. 3. Geological schemes of the Bukukinskoye (a) and Belukhinskoye (b) deposits in Eastern Transbaikalia (after D.O. Ontoev, 1974; B.A. Gaivoronsky, 1995, with modifications). a (Bukukinskoye deposit): 1 - Lower-Middle Jurassic sandstones with interlayers of shales and conglomerates; 2 - dikes and small stocks of lamprophyres and diorite porphyrites; 3 - fine-grained granodiorites; 4 - porphyritic granodiorites; 5 - medium-grained granodiorites, 6 - zones of greisens and quartz-muscovite metasomatites; 7 - quartz veins with wolframite and sulfides; 8 - faults; 9 – zones of vein and stockwork predominantly quartz-wolframite mineralization; 10 – zones of vein and stockwork predominantly quartz-wolframite-sulfide mineralization. b (Belukha deposit): 1 – lamprophyre and diorite porphyrite dikes; 2 – granophyre dikes; 3 – fine-grained amphibole-biotite granodiorites; 4 – biotite-amphibole granodiorites; 5 – coarse-grained biotite granites; 6 – quartz-tourmaline greisens; 7 – quartz veins with wolframite and sulfides; 8 – faults, zones of vein and stockwork predominantly quartz-wolframite mineralization; 10 – zones of vein and stockwork predominantly quartz-wolframite-sulfide mineralization; 11 – zones of quartz-tourmaline greisens.

Download (363KB)
5. Fig. 4. Geological scheme of the Khapcheranga deposit in Eastern Transbaikalia (after B.I. Gongalsky and A.D. Sergeev, 1995, with modifications). 1 - alternation of sandstones and siltstones; 2 - granite porphyry stock; 3 - tungsten-tin ore greisens; 4 - tin ore veins; 5 - veins with Pb-Zn sulfide mineralization; 6-9 - zones of vein area (6 - zone of predominantly quartz-cassiterite veins, 7 - zone of predominantly cassiterite-sulfide veins, 8 - zone of predominantly Pb-Zn sulfide veins, 9 - quartz-calcite veins with rare sulfide mineralization).

Download (193KB)
6. Fig. 5. Metallogenic scheme of the Sikhote-Alin orogenic system (a) and geological scheme of the Kavalerovsky ore district (b) (after A.I. Khanchuk, 2000; V.G. Gonevchuk, 2005; with modifications). a: 1 - East Sikhote-Alin volcanic belt; 2 - Early Cretaceous turbidite basins; 3 - Paleozoic to Jurassic terranes; 4 - Precambrian to Early Paleozoic terranes; 5 - Early and Late Cretaceous granitoid plutons; 6 - Central Sikhote-Alin fault (a) and other large faults (b); 7 - tin deposits; 8 - tungsten deposits; 9 - gold-copper and molybdenum-copper porphyry deposits and ore occurrences; 10 - gold deposits; 11 – contours of tin and tungsten ore districts (ore districts: 1 – Voznesensky, 2 – Furmanovsky, 3 – Kavalerovsky, 4 – Verkhne-Ussursky (Terneisky), 5 – Arminsky, 6 – Bikinsky (Lermontovsky), 7 – North Sikhote-Alinsky, 8 – Khingan-Olonoisky, 9 – Badzhalsky, 10 – Komsomolsky, 11 – Dusse-Alinsky, 12 – Aesop-Yamalinsky. In the frame – Fig. 5b b: 1 – Taukha terrane (Cretaceous accretionary prism); 2 – Zhuravlevka terrane (Early Cretaceous turbidite basin); 3 – Samarka terrane (Jurassic accretionary prism); 4 – Late Cretaceous-Paleocene (70–60 Ma) granite-porphyry (a) and rhyolitic; dacite and andesite-dacite lavas and tuffs (b); 5 - Late Cretaceous-Paleocene (85-60 Ma) leucogranites; 6 - Late Cretaceous (100-85 Ma) quartz diorites; granodiorites (a); andesites (b) (Uglovskii complex); 7 - Early-Late Cretaceous (115-95 Ma) monzogabbro; monzonites (a); trachyandesites-trachybasalts (b) (Berezovsky-Ararat complex of the ilmenite series); 8 - Late Cretaceous (95-80 Ma) granodiorites-granites (Sinanchinsky complex); 9 – Early Cretaceous (110–102 Ma) monzogabbros, monzodiorites, diorites, granodiorites (azure complex of magnetite series); 10 – tin deposits (a), gold-copper-porphyry (b), gold (c); 11 – large faults. Deposits (numbers on the diagram: 1 – Lazurnoye, 2 – Arsenyevskoye, 3 – Novogorskoye, 4 – Iskra, 5 – Ivanovskoye, 6 – Dubrovskoye, 7 – Yubileynoye, 8 – Temnogorskoye, 9 – Silinskoye, 10 – Khrustalnoye, 11 – Vysokogorskoye.

Download (729KB)
7. Fig. 6. Geological scheme of the Arsenyevskoye deposit in the Kavalerovsky ore region of Sikhote-Alin (Geology of tin ore deposits ..., 1986). 1 - alternation of sandstones and siltstones; 2 - conglomerates; 3 - silty sandstones; 4 - agglomerates and tuff breccias of potassium rhyolites of volcanic vents; 5 - monzonites; 6 - trachybasalts; 7 - ore bodies; 9 - crushing zones; 10 - contour of the basement part of the paleocaldera.

Download (187KB)
8. Fig. 7. Geological scheme of the Deputatskoye deposit in Yakutia (after B.L. Flerov, 1965; V.N. Dubrovsky, I.N. Kigai, 1974; M.P. Materikov, 1978; with modifications). 1 - Jurassic terrigenous deposits; 2 - contours of granitoid massif projections (according to geophysical data); 3 - quartz porphyry dikes; 4 - diorite porphyrite and lamprophyre dikes; 5 - distribution zone of tourmaline and quartz-tourmaline-cassiterite veins; 6 - distribution zone of cassiterite-quartz-tourmaline and quartz-sulfide veins; 7 - distribution zone of quartz-sulfide veins with chlorite and carbonates; 8 - distribution zone of quartz-carbonate veins with galena; sphalerite and Ag mineralization, 9 – individual large ore veins.

Download (140KB)
9. Fig. 8. Geological scheme of some ore regions of Eastern Transbaikalia (according to I.N. Thomson, 1988, with changes). 1–3 – metallogenic belts (1 – gold-molybdenum; 2 – tin-tungsten-rare metal; 3 – uranium-gold-copper-polymetallic); 4 – gold deposits; 5 – tungsten and tin deposits; 6 – intrusions of the Kukulbey complex; 7 – faults; 8 – contours of their

Download (507KB)
10. Fig. 9. Geological scheme of the Arminsky ore district (after S.M. Rodionov, 2003; V.G. Gonevchuk, 2005; S.G. Soloviev, 2008, with modifications). 1 - terrigenous and volcanic deposits of the Cretaceous and Jurassic terranes of Sikhote-Alin; 2 - Paleogene gabbro-monzonite-syenite intrusions; 3 - Late Cretaceous-Paleogene basalts; andesites and rhyolites of the East Sikhote-Alin volcanic belt; 4 - Early and Late Cretaceous plutons of granitoids; 5 - linear faults; 6 - arc faults of different-order concentric structures - elements of the Dalnensky arched uplift; 7 - polymetal-tungsten deposits and ore occurrences; 8 – tin-tungsten deposits; 9 – tin-tungsten-rare metal deposits; 10 – polymetallic-tin deposits; 11 – polymetallic deposits; 12 – gold deposits.

Download (508KB)
11. Fig. 10. Scheme of deep mineralization stages in tin ore districts (after I.N. Thomson, 1988, with modifications), including the lower greisen stage, middle quartz-cassiterite stage and upper cassiterite-sulfide stage. 1 – interbedding of sandstones and siltstones; 2 – zone of intensive biotitization (“biotitites”); sometimes also tourmalinization; 3 – biotite and tourmaline-biotite granites; 4 – gabbro-monzonite-syenite-trachybasalt-trachyandesite-rhyolite complex; 5 – rare-metal lithium-fluoride granites; 6 – early quartz-tourmaline greisens with cassiterite and wolframite; 7 – quartz-cassiterite stockwork zones (with tourmaline; chlorite, etc.); 8 – cassiterite-sulfide veins and stockworks; 9 – late quartz-tourmaline, quartz-topaz, quartz-muscovite, quartz-fluorite greisens with cassiterite, wolframite, beryl, Ta-Nb-Li mineralization.

Download (154KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».