Periodicity and kinematics of the formation of porphyry copper deposits in the pacific belt over the past 125 million years

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Statistical analysis of the time series of Cu-porphyry deposits of the Pacific belt and their total ore volume formed in the last 125 million years showed the presence of (quasi)a cyclic component with a period of 26–28 million years, whose share in the total amplitude is 74%. An inverse correlation has been established between the global spreading rate, on the one hand, and the number of Cu-porphyry deposits in the Pacific belt and their productivity, on the other, for the last 125 million years. The relative minima of the spreading rate precede the relative maxima of the number and total volume of Cu-porphyry deposits in the Pacific belt by 5–10 million years. During the formation of large and giant Cu-porphyry deposits in the Pacific belt, the rate of change in the angle of convergence in the horizontal plane in the zone of interaction between two tectonic plates increases. At the same time, the absolute rate of convergence can both decrease and increase. According to geological, structural and kinematic data, magmatism, as a result of which 8 large and giant Cu-porphyry deposits were formed, was accompanied by through-crust disjunctive disturbances associated either with a change in the frontal convergence of the "oblique", or a transition to the mode of a transform continental margin, or with a reversible change in the direction of subduction associated with the island arc-continent collision The island arc is an oceanic plateau.

Full Text

Restricted Access

About the authors

A. N. Didenko

Geological Institute, Russian Academy of Sciences; Kosygin Institute Tectonics and Geophysics, Far Eastern Branch, Russian Academy of Sciences

Author for correspondence.
Email: itig@itig.as.khb.ru
Russian Federation, Moscow; Khabarovsk

M. Yu. Nosyrev

Kosygin Institute Tectonics and Geophysics, Far Eastern Branch, Russian Academy of Sciences

Email: itig@itig.as.khb.ru
Russian Federation, Khabarovsk

G. Z. Gilmanova

Kosygin Institute Tectonics and Geophysics, Far Eastern Branch, Russian Academy of Sciences

Email: gin@ginras.ru
Russian Federation, Khabarovsk

References

  1. Архипов М.В., Войнова И.П., Кудымов А.В., Песков А.Ю., Ото Ш., Нагата М., Голозубов В.В., Диденко А.Н. Сравнительный анализ апт-альбских пород Кемского и Киселевско-Маноминского террейнов: геохимия, геохронология и палеомагнетизм // Тихоокеанская геология. 2019. Т. 38. № 3. С. 58–83.
  2. Буханова Д.С. Минералого-геохимические особенности Малмыжского золотомедно-порфирового месторождения, Хабаровский край: автореф. дисс. канд. геол.-мин. наук: 25.00.11. Петропавловск-Камчатский, 2020. 25 с.
  3. Викентьев И.В., Бортников Н.С. Предисловие к специальному выпуску журнала “Геология рудных месторождений”, посвященному порфировым и родственным месторождениям Северной Евразии // Геология рудных месторождений. 2023. Т. 65. № 7. С. 591–595. doi: 10.31857/S0016777023070067
  4. Викентьев И.В., Бортников Н.С. Предисловие к специальному выпуску журнала “Геология рудных месторождений”, посвященному порфировым и родственным месторождениям Северной Евразии // Геология рудных месторождений. 2024. Т. 66. № 1. С. 3–6.
  5. Волков А.В., Сидоров А.А., Старостин В.И. Металлогения вулканогенных поясов и зон активизации. М.: МАКС Пресс, 2014. 356 с.
  6. Геодинамика, магматизм и металлогения Востока России: в 2 кн. / Под ред. А.И. Ханчука. Владивосток: Дальнаука. 2006. Кн. 1., 572 с., Кн. 2, 409 с.
  7. Государственная геологическая карта Российской Федерации. Масштаб 1:1000000 (третье поколение). Серия Дальневосточная. Лист М-53 – Хабаровск. Объяснительная записка. С-Пб.: Картфабрика ВСЕГЕИ, 2009. 376 с.
  8. Диденко, А.Н., Архипов, М.В., Талтыкин, Ю.В., Крутикова, В.О., Коновалова Е.А. Петро-палеомагнитная характеристика габбродиоригов нижнеамурского комплекса Журавлевско-Амурского террейна (Сихотэ-Алиньский орогенный пояс) // Тихоокеанская геология. 2023. Т. 42. № 5. С. 57–75. https://doi.org/10.30911/0207-4028-2023-42-5-57-75
  9. Добрецов Н.Л. Рудообразование и глобальные геологические процессы: эволюция и проблемы периодичности / Смирновский сборник-96: основные проблемы рудообразования и металлогении. Москва, 1996. С. 38–60.
  10. Дэвис Дж.С. Статистический анализ данных в геологии. Пер. с англ. В 2 кн./Пер. В.А. Голубевой. Под ред. Д.А. Родионова. М.: Недра, 1990. Кн. 1 (319 с.). Кн. 2 (427 с.).
  11. Каламбет Ю.А., Козьмин Ю.П., Самохин А.C. Фильтрация шумов. Сравнительный анализ методов // Аналитика. 2017. Т. 36. № 5. С. 88–101. https://doi.org/10.22184/2227-572X.2017.36.5.88.101
  12. Кокс А., Харт Р. Тектоника плит. М.: Мир, 1989. 427 с.
  13. Любушин А.А. Анализ данных систем геофизического и экологического мониторинга. М.: Наука, 2007. 228 с.
  14. Рундквист Д.В., Ткачев А.В., Черкасов С.В., Гатинский Ю.Г., Вишневская Н.А. База данных и металлогеническая карта крупных и суперкрупных месторождений мира: принципы составления и предварительный анализ результатов / Крупные и суперкрупные месторождения: закономерности размещения и условия образования. Под ред. Д.В. Рундквиста. М.: ИГЭМ РАН, 2004. С. 391–422.
  15. Ханчук А.И., Иванов В.В., Игнатьев Е.К., Коваленко С.В., Семенова Д.В. Альб-сеноманский магматизм и медный рудогенез Сихотэ-Алиня // Докл. РАН. 2019. Т. 488. № 3. С. 69–73.
  16. Шарапов В.Н., Лапухов А.С., Смолянинова Л.Г. Временные характеристики развития вулканоплутонических рудно-магматических систем окраин Тихого океана // Геология и геофизика. 2013. Т. 54. № 11. С. 1731–1753.
  17. Якубчук А.С. Порфировые месторождения Северной Евразии: практические аспекты тектонического контроля, структурных особенностей и оценки эрозионного среза от Урала до Тихого океана // Геология рудных месторождений. 2024. Т. 66. № 1. С. 7–26.
  18. Amilibia A., Sabat F., McClay K.R., Munoz J.A., Roca E., Chong G. The role of inherited tectono-sedimentary architecture in the development of the central Andean mountain belt: Insights from the Cordillera de Domeyko // J. Struct. Geol. 2008. V. 30(12). P. 1520–1539. https://doi.org/10.1016/j.jsg.2008.08.005
  19. Argus D.F., Gordon R.G., DeMets C. Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame // Geochem. Geophys. Geosyst. 2011. V. 12. Q11001. https://doi.org/10.1029/2011GC003751
  20. Boulila S., Haq B.U., Hara N., Müller R.D., Galbrun B., Charbonnier G. Potential encoding of coupling between Milankovitch forcing and Earth’s interior processes in the Phanerozoic eustatic sea-level record // Earth-Science Reviews. 2021. V. 220. P. 103727(1–50). https://doi.org/10.1016/j.earscirev.2021.103727
  21. Cao X., Zahirovic S., Li S., Suo Y., Wang P., Liu J., Müller R.D. A deforming plate tectonic model of the South China Block since the Jurassic // Gondwana Research. 2022. V. 102. P. 3–16. https://doi.org/10.1016/j.gr.2020.11.010
  22. Cloos M., Sapiie B., van Ufford A.Q., Weiland R.J., Warren P.Q., McMahon T.P. Collisional delamination in New Guinea: The geotectonics of subducting slab breakoff // Geological Society of America. Special Paper 400. 2005. 51 p. https://doi.org/10.1130/2005.2400
  23. Coe R.S., Globerman B.R., Plumley P.W., Thrupp G.A. Paleomagnetic results from Alaska and their tectonic implications / In: Tectonostratigraphic Terranes of the CircumPacific Region, Ed. D.G. Howell. Am. Assoc. Petrol. Geol., Houston Circum-Pacific Council for Energy and Mineral Resources, Series 1. 1985. P. 85–108.
  24. Coleman P.J., Hackman B.D. Solomon Islands / In Mesozoic-Cenozoic Orogenic Belts: Data for Orogenic Studies. Ed. by A.M. Spencer. Scottish Academic Press, Edinburgh, 1974. P. 453–461. https://doi.org/10.1144/GSL.SP.2005.004.01.28
  25. Cooke D.R., Hollings P., Walshe J.L. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls // Economic Geology. 2005. V. 100. № 5. P. 801–818. https://doi.org/10.2113/gsecongeo.100.5.801.
  26. Corbett G., Leach T. Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization // Economic Geology. Society of Economic Geologists. 1998. Special Publication 6. 238 p. https://doi.org/10.5382/SP.06Corpus ID: 112266656
  27. Deng J., Yang X., Zhang Z-F., Santosh M. Early Cretaceous arc volcanic suite in Cebu Island, Central Philippines and its implications on paleo-Pacific plate subduction: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotope // Lithos. 2015. V. 230. P. 166–179. https://doi.org/10.1016/j.lithos.2015.05.020
  28. Diaz-Rodriguez J., Muller R.D., Chandrall R. Predicting the emplacement of Cordilleran porphyry copper systems using spatio-temporal machine learning model // Ore Geol. Rev. 2021. V. 137. P. 104300. https://doi.org/! 0.1016/j.oregeorev.2021.104300
  29. Eastoe C.J. The formation of the Panguna porphyry copper deposit, Bbougainville, Papua New Guinea. Bachelor of Science (Honours). University of Tasmania, Hobart. 1979. 84 p.
  30. English J.M., Jonston S.T. The Laramide Orogeny: What Were the Driving Forces? // International Geology Review. 2004. V. 46. P. 833–838.
  31. Geological map, Bougainville and Buka Islands, Territory of Papua and New Guinea / compiled by Y. Miezitis. 1967. https://nla.gov.au/nla.obj-1532817321/view
  32. GPlates software. 2022. https://www.gplates.org/
  33. Hackman, B.D. 1980. The Geology of Guadalcanal, Solomon Islands. Overseas Memoir, Institute of Geological Sciences. London: 1980. № 6. 115 p.
  34. Haeussler P.J., Saltus R.W. Twenty-six kilometers of offset since late Eocene time on the Lake Clark fault / In Haeussler P.J., Galloway J.P., eds. Studies by the U.S. Geological Survey in Alaska, 2004: U.S. Geological Survey Professional Paper 1709-A. 2005. P. 1–4.
  35. Hammer O., Harper D.A.T., Ryan P.D. PAST: Paleontological Statistics software package for education and data analysis // Palaeontologia Electronica. 2001. V. 4. Is. 1. P. 1–9. https://palaeo-electronica.org/2001_1/past/past.pdf
  36. Humphreys E., Hessler E., Dueker K., Farmer G.L., Erslev E., Atwater, T. How Laramide-Age Hydration of North American Lithosphere by the Farallon Slab Controlled Subsequent Activity in the Western United States // International Geology Review. 2003. V. 45(7). P. 575–595. https://doi.org/10.2747/0020-6814.45.7.575
  37. Kay, S.M., Mpodozis C., Central Andean Ore Deposits Linked to Evolving Shallow Subduction Systems and Thickening Crust, GSA Today, 2001, 4(3), 4–9. https://doi.org/10.1130/1052-5173(2001)011<0004:caodlt>2.0.co;2
  38. Khanchuk A.I., Kemkin I.V., Kruk N.N. The Sikhote-Alin orogenic belt, russian south east: terranes and the formation of continental lithosphere based on geological and isotopic data // Journal of Asian Earth Sciences. 2016. V. 120. C. 117–138.
  39. Lang J.R., Gregory M.J. Chapter 8. Magmatic-Hydrothermal-Structural Evolution of the Giant Pebble Porphyry Cu-Au-Mo Deposit with Implications for Exploration in Southwest Alaska / Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe, Jeffrey W. Hedenquist, Michael Harris, Francisco Camus 2012 Society of Economic Geologists, Inc. 2012. P. 167–185.
  40. Lang J.R., Gregory M.J., Rebagliati C.M., Payne J.G., Oliver J.L., Roberts K. Geology and magmatic-hydrothermal evolution of the giant Pebble porphyry copper-gold-molybdenum deposit, southwest Alaska // Economic geology. 2013. V. 108. P. 437–462.
  41. Langton, J.M., Williams, S.A., Structural, petrological and mineralogical controls for the Dos Pobres orebody: Lone Star mining district, Graham County, Arizona (USA). Advances in geology of the porphyry copper deposits: southwestern North America, 1982, 335–352.
  42. Li M., Hinnov L.A., Kump L.R. Acycle: Time-series analysis software for paleoclimate projects and education // Computers & Geosciences. 2019. V. 127. P. 12–22. https://doi.org/10.1016/j.cageo.2019.02.011
  43. Liu, L., Gurnis, M., Seton, M. et al. The role of oceanic plateau subduction in the Laramide orogeny. Nature Geoscience. 2010. V. 3. P. 353–357. https://doi.org/10.1038/ngeo829
  44. Lomb N.R. Least-squares frequency analysis of unequally spaced data // Astrophys. & Space Sci. 1976. V. 39. P. 447–462.
  45. Maksaev V., Munizaga F., McWilliams M., Fanning M., Marther R., Ruiz J., Zentilli M. Chronology for El Teniente, Chilean Andes, from U-Pb, 40Ar/39Ar, Re-Os, and fission track dating: implications for the formation of a supergiant porphyry Cu-Mo deposit. In: Sillitoe R.H., Perello J. & Vidal C.E. (eds) Andean Metallogeny: New Discoveries, Concepts and Updates. Society of Economic Geologists, 2004, Special Publications 11, 15–54.
  46. Mars J.C., Robinson G.R., Hammarstrom J.M., Zürcher L., Whitney H., Solano F., Gettings M., Ludington S. Porphyry Copper Potential of the United States Southern Basin and Range Using ASTER Data Integrated with Geochemical and Geologic Datasets to Assess Potential Near-Surface Deposits in Well-Explored Permissive Tracts // Economic Geology. 2019. V. 114 (6). P. 1095–1121. https://doi.org/10.5382/econgeo.4675
  47. Mihalasky M.J., Ludington S., Alexeiev D.V., Frost T.P., Light T.D., Briggs D.A., Hammarstrom J.M., Wallis J.C., with contributions from Bookstrom A.A. and Panteleyev A. Porphyry copper assessment of Northeast Asia-Far East Russia and Northeasternmost China. U.S. Geological Survey, Scientific Investigations Report 2010-5090-W. 2015. 104 p., and spatial data. http://dx.doi.org/10.3133/sir20105090W
  48. Mineral Resources Online Spatial Data. 2023. https://mrdata.usgs.gov/#mineral-resources
  49. Mpodozis C., Cornejo P. Chapter 14. Cenozoic Tectonics and Porphyry Copper Systems of the Chilean Andes / Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe, Jeffrey W. Hedenquist, Michael Harris, Francisco Camus 2012 Society of Economic Geologists, Inc. 2012. P. 329–360.
  50. Müller R.D., Zahirovic S., Williams S.E., Cannon J., Seton M., Bower D.J., Tetley M.G., Heine C., Le Breton E., Liu S., Russell S.H.J., Yang T., Leonard J., Gurnis M. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic // Tectonics. 2019. V. 38(6) P. 1884–1907. https://doi.org/10.1029/2018TC005462
  51. Nagel T.J., Ryan W.B.F., Malinvemo A., Buck W.R. Pacific trench motions controlled by the asymmetric plate configuration // Tectonics. 2008. V. 27. TC3005. https://doi.org/10.1029/2007TC002183, 2008
  52. Olson, N., Dilles, J.H., Kent, A.J.R., Lang, J.R., Geochemistry of the Cretaceous Kaskanak batholith and genesis of the pebble porphyry Cu–Au–Mo deposit, southwest Alaska. American Mineralogist, 2017, 102, 1597–1621, https://doi.org/10.2138/am-2017-6053
  53. Ossandon G., Freraut R., Gustafson L.B., Lindsay D.D., Zentilli, M. Geology of the Chuquicamata mine: A progress report // Economic Geology. 2001. V. 96. P. 249–270.
  54. Page R.W., McDougall I. Geochronology of the Panguna porphyry copper deposit, Bougainville Island, New Guinea // Economic Geology. 1972. V. 67(8). P. 1065–1074.
  55. Paterson J.T., Cloos M. Grasberg porphyry Cu-Au deposit, Papua, Indonesia: 1. Magmatic history / In Super Porphyry Copper & Gold Deposit: A Global Perspective. Ed. T.M. Porter. Adelaide: PGC Publishing, 2005. V. 2. P. 313–329.
  56. Petrov O.V., Khanchuk A.I., Ivanov V.V., Shatov V.V., R. Seltmann C., Dolgopolova A.V., Alenicheva A.A., Molchanov A.V., Terekhov A.V., Leontev V.I., Belyatsky B.V., Rodionov N.V., Sergeev S.A. Porphyry indicator zircons (PIZ) and geochronology of magmatic rocks from the Malmyzh and Pony Cu-Au porphyry ore fields (Russian Far East) // Ore Geology Reviews. 2021. V. 139. Article 104491. https://doi.org/10.1016/j.oregeorev.2021.104491
  57. Pisarevsky, S.A., Li, Z.X., Tetley, M.G., Liu, Y., Beardmore, J.P., An updated internet-based Global Paleomagnetic Database, Earth-Science Reviews, Volume 235, 2022, 104258, https://doi.org/10.1016/j.earscirev.2022.104258.
  58. Prokoph A., Fowler A.D., Patterson R.T. Evidence for periodicity and nonlinearity in a highresolution fossil record of long-term evolution // Geology. 2000. V. 28. P. 867–870.
  59. Ramos V.A., Folguera A. Andean flat-slab subduction through time / Ancient Orogens and Modern Analogues, eds.: Murphy J.B., Keppie J.D., Hynes A.J. Geological Society, London. 2009. Special Publications. V. 327. P. 31–54. https://doi.org/10.1144/SP327.3 0305-8719/09
  60. Ramos V.A., Folguera A., Payenia volcanic province in the Southern Andes: An appraisal of an exceptional Quaternary tectonic setting, J.Volcanology&Geothermal Res. 2011, 201, 53–64. https://doi.org/10.1016/j.jvolgeores.2010.09.008
  61. Rampino M.R., Caldeira K., Zhu Y. A 27.5-My underlying periodicity detected in extinction episodes of non-marine tetrapods // Historical Biology. 2021a. V. 33(11). P. 3084–3090. https://doi.org/10.1080/08912963.2020.1849178
  62. Rampino M.R., Caldeira K., Zhu Y. A pulse of the Earth: A 27.5-Myr underlying cycle in coordinated geological events over the last 260 Myr // Geoscience Frontiers. 2021b. Volume 12, Issue 6, 101245. https://doi.org/10.1016/j.gsf.2021.101245.
  63. Raup D.M., Sepkoski J.J. Periodicity of extinctions in the geologic past // Proceedings of the National Academy of Sciences. 1984. V. 81. No. 3. P. 801–805. https://doi.org/10.1073/pnas.81.3.801. PMC 344925. PMID: 6583680.
  64. Richards J.P. Porphyry copper deposit formation in arcs: What are the odds? // Geosphere. 2021. V. 18(1). P. 130–155. https://doi.org/10.1130 /GES02086.1
  65. Richards J.P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere // Geology. 2009. V. 37. P. 247–250.
  66. Rodrigo J.D., Gabo-Ratio J.A.S., Queaño K.L., Fernando A.G.S., de Silva L.P., Yonezu K., Zhang Y. Geochemistry of the Late Cretaceous Pandan Formation in Cebu Island, Central Philippines: Sediment contributions from the Australian plate margin during the Mesozoic // Depositional Rec. 2020. 6. P. 309–330. https://doi.org/10.1002/dep2.103
  67. Russin Hypogene alteration and mineralization in the Dos Pobres porphyry Cu (-Au-Mo) deposite, Safford district, Arizona: a gold -and magnetite-rich variant of Arizona porphyry copper systems. A thesis submitted to the faculty of the department of geosciences, 2008, 120 p. www.geo.arizona.edu/Antevs/Theses/RussinMS08.pdf
  68. Sapiie В, Cloos M. Strike-slip faulting in the core of the Central Range of west New Guinea: Ertsberg Mining District, Indonesia // Geological Society of America Bulletin. 2004. V. 116. P. 277–293.
  69. Sapiie В. Kinematic Analysis of Fault-Slip Data in the Central Range of Papua, Indonesia // Indonesian Journal on Geoscience. 2016. V. 3 (1). P. 1–16. https://doi.org/10.17014/ijog.3.1.1-16
  70. Savitzky A., Golay M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures // Anal. Chem. 1964. V. 36. P. 1627–1639. https://doi.org/10.1021/ac60214a047
  71. Scargle J.D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data // Astrophys. J. 1982. Vol. 263. P. 835–853.
  72. Sillitoe R.H. Chapter 1. Copper Provinces / Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe, Jeffrey W. Hedenquist, Michael Harris, Francisco Camus 2012 Society of Economic Geologists, Inc. 2012. P. 1–18.
  73. Sillitoe R.H. Porphyry copper systems // Economic Geology. 2010. V. 105. P. 3–41. https://doi.org/10.2113/gsecongeo.105.1.3.
  74. Singer D.A., Berger V.I., Moring B.C. Porphyry Copper Deposits of the World: Database And Grade and Tonnage Models, 2008. Open-File Report 2008-1155. U.S. Geological Survey, Menlo Park. 2008. 46 p. https://www.researchgate.net/publication/303172164_Porphyry_ copper_deposits_of_the_world_database_map_grade_and_tonnage_models/link/5f530c17299bf13a31a0946e/
  75. Stern, C.R., Skewes, M.A., Arevalo A., Magmatic Evolution of the Giant El Teniente Cu–Mo Deposit, Central Chile // J. Petrology. 2011. V. 52. P. 1591–1617.
  76. Taylor B. A Geophysical Survey of the WoodlarkSolomons Region. Circum-Pacific Council for Energy and Mineral Resources, Earth Sci. 1987. Ser. 7. P. 25–48.
  77. Zhou D., Li CF., Zlotnik S., Wang J. Correlations between oceanic crustal thickness, melt volume, and spreading rate from global gravity observation // Mar Geophys Res. 2020. V. 41. P. 14. https://doi.org/10.1007/s11001-020-09413-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of porphyry copper deposits on the whole Earth (a) and the Pacific belt with an ore content of more than 1 million tons (b) (a): 1 – Cu-porphyry deposits of the world according to (Mihalasky et al., 2015; Mineral Resources…, 2023; Singer et al., 2008); 2 – largest cities. Equal-area projection, central meridian 150°. (b): 1 – tectonic plate boundaries according to (Bird, 2003; Argus et al., 2011), the names of which are given in italics: Altiplano, Amur, Antarctica, Australia, Banda, Birds head, Caribbean, Caroline, Cocos, Easter, Eurasia, Juan de Fuca, Juan Fernandez, Kermadec, Malucca, Maoke, Mariana, N.America, N.Andes, N.Bismarck, N.Nazca, New Hebrides (Novogibridskaya), Okhotsk, Okinava, Pacific, Panama, Philippine, Rivera, S.America, S.Bismarck, Scotia, Solomon, Sunda, Timor, Tonga, Woodlark, Yangtze; 2 – location of deposits with age group (color) and total ore amount (size) (Singer et al., 2008; Mihalasky et al., 2015); 3 – location of the largest porphyry Cu deposits in their age group: 1 – Atlas, 2 – Malmyzh, 3 – Pebble Copper, 4 – Safford, 5 – Chuquicamata, 6 – El Teniente, 7 – Panguna, 8 – Grasberg. Equal-area projection, central meridian 210°.

Download (693KB)
3. Fig. 2. Distribution of Cu-porphyry deposits of the Pacific belt in time (a) and by volume (b), time dependence of the total volume of ore of all deposits of the Pacific belt (c). In (b) the solid line shows the theoretical lognormal distribution with statistical parameters similar to the observational data. In (c) the bar diagram shows the original series and the dashed line shows the series smoothed by the Savitzky-Golay filter (Savitzky, Golay, 1964).

Download (449KB)
4. Fig. 3. Analysis of the time dependence of the total ore volume of the Pacific Ocean belt porphyry Cu deposits over the past 125 million years. (a) – the original series is shown as a bar histogram, the smoothed series by the Savitzky-Golay filter (Savitzky, Golay, 1964) is shown as a dashed line. (b) – autocorrelation functions (Davis, 1990) of the original series (solid line) and the smoothed series (dashed line). (c), (d) – Lomb-Scargle periodograms (Baluev, 2009; Lomb, 1976; Scargle, 1982) of the original and smoothed series, respectively. (d), (e) – Morlet wavelet diagrams (Lyubushin, 2007; Torrence, Compo, 1998) of the original and smoothed series, respectively.

Download (701KB)
5. Fig. 4. Paleoreconstructions (a, c) and calculation of kinematic parameters (b, d) for 108 million years ago for the Atlas deposit and 95 million years ago for the Malmyzh deposit. Legends for (a) and (c): 1–4 – boundaries of lithospheric tectonic plates according to (Bird, 2003; Argus et al., 2011) with additions and changes: 1 – divergent, 2 – convergent active (active at the time of deposit formation), 3 – convergent extinct, 4 – transform; 5 – transform shifts; 6 – direction and velocity of lithospheric plate migration (arrow length is proportional to velocity); 7 – reconstructed positions of deposits. Abbreviations of tectonic plates in Fig. 4–7: ANT – Antarctic, AUS – Australian, CAR – Caroline, CEL – Celebes Basin, EHA – East Halmahera, EPH – East Philippine, ESP – Sunda, EUR – Eurasian, FAR – Farallon, NSW – North Sulawesi, IZA – Izanagi, MOL – Moluccan, NAM – North American, NAZ – Nazca, NBA – North Bandu, NBK – North Bismarck, NHB – New Hybrid, NTE – Neo-Tethys, NWB – North Woodlark, PAC – Pacific, PHS – Philippine, SAM – South American, SBA – South Bandu, SBK – South Bismarck, SOL – Solomon Sea, SSW – South Sulawesi, VAN – Vancouver, WHA – West Halmahera, WOY – Woyla, index “b” means back-arc basin, WPH – West Philippine. The abbreviation CSAR on “v” means Central Sikhote-Alin Fault. Legends for (b) and (d): circles – velocity; triangles – azimuth. Global reconstructions (Muller et al., 2019) were used, as well as specific paleogeodynamic characteristics for “a” (Deng et al., 2015; McCabe et al., 1987; Rodrigo et al., 2019) and “c” (Arkhipov et al., 2019; Didenko et al., 2023; Khanchuk et al., 2016). Calculation of kinematic parameters in Fig. 4–7 was performed on the coordinates of the deposits (see Table 1) in the GPlates software package (2022).

Download (534KB)
6. Fig. 5. Fragments of global reconstructions (a, c) and calculation of kinematic parameters (b, d) at 89 Ma for the Pebble deposit and 52 Ma for the Safford deposit. IFR (in Fig. 5a) is the Izanagi-Farallon Ridge. HSP (in Fig. 5c) is the Shatsky Plateau. For other legend, see Fig. 4. Global reconstructions (Muller et al., 2019) were used, as well as specific paleogeodynamic characteristics for the Pebble (Harris et al., 1987; Hillhoese, Gromme, 1988; Olson et al., 2017) and Safford (Hagstrum, 1994; Liu et al., 2010; Vugteveen et al., 1981) deposits.

Download (476KB)
7. Fig. 6. Fragments of global reconstructions (a, c) and calculation of kinematic parameters (b, d) at 33 Ma for the Chuquicamata deposit and 5 Ma for the El Teniente deposit. JFR (Fig. 6c) is the Juan Fernandez Ridge. For other legend, see Fig. 4. Global reconstructions (Muller et al., 2019) were used, as well as specific paleogeodynamic characteristics for the Chuquicamata (Prezzi, Vilas, 1998; Ramos, Folguera, 2009) and El Teniente (Goguitchaichvili et al., 2000; Ramos, Folguera, 2009; 2011) deposits.

Download (428KB)
8. Fig. 7. Fragment of the global reconstruction (a) and calculation of kinematic parameters (b, c) for 3 million years ago for the Panguna and Grasberg deposits. In (a), the northern boundary of the thrust Australian plate is indicated by a black thick dotted line. GR is the Grasberg deposit, PN is the Panguna deposit, OJP is the Ontong Java plateau. For other legend, see Fig. 4. Global reconstructions (Muller et al., 2019) were used taking into account data (Cloos et al., 2005; Sapiie, 2016), as well as specific paleogeodynamic characteristics for the Panguna (Musgrave, 1990; Taylor, 1987) and Grasberg (Paterson, Cloos, 2005; paleomagnetic poles Nos. 1911, 1912 from Pisarevsky et al., 2022) fields.

Download (411KB)
9. Fig. 8. Comparison of models of (a) spreading rate (Baulila et al., 2021; Muller et al., 2019) and (b) total ore volume of Pacific Rim porphyry Cu deposits (this work) for the last 125 Ma. Time dependence numbers in (a): 1, 2 – MOR spreading rate according to (Müller et al. 2019) and its trend calculated by smoothing the initial values, according to (Boulila et al., 2021), respectively; 3, 4 – model reconstructed time series of spreading rate after removing the trend and the largest harmonic of the model series according to (Boulila et al., 2021), respectively. Time dependence numbers in (b): 5, 6 – initial series of total ore volume and smoothed by Savitsky-Golay filter (this work), respectively; 7, 8 – model reconstructed time series of total ore volume and the largest amplitude harmonic of the model series by (this work), respectively. Gray rectangles emphasize the time connection of maxima in time dependences of total ore volume (b), on the one hand, and minima in time dependences of spreading rate (a), on the other.

Download (395KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».