Khokhoy deposit is a new Carlin-type gold-bearing object (Aldan shield)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To the west of the unique gold-mining Central Aldan ore district at the Khokhoy deposit of Verkhneamginskaya area, gold mineralization has been identified for the first time in terms of regional position, structural, morphological, and mineralogical-geochemical parameters comparable to its global analogue, the Carlin type. The deposit is located on the northern margin of the Precambrian Aldan shield in the deep Amga fault zone at the junction of two large structural units: the Olekminsky granite-greenstone region (Olekminsky craton) and the Aldan granulite-gneiss region (mobile belt). The mineralization is represented by sandy loam-clay-clastic karst formations developed on the tectonized contact of Lower Cambrian carbonate and Lower Jurassic terrigenous sedimentary rocks. Ore-bearing sublongitudinal steeply falling discontinuous faults are accompanied by Cretaceous dikes of sub-alkaline rocks. The friable supergenic formations consist of quartz, muscovite, clay minerals (illite, clinochlore, Fe-clinochlore, kaolinite), lepidocrocite, carbonates, barite, fluorite, goethite, jarosite, and hematite. The primary ores were preserved in the form of fragments/relics of jasperoids – pyrite-adularia-quartz metasomatites formed as a result of silicic-potassic metasomatism of carbonate rocks. Jasperoids carry low-temperature mineralization, represented by fine-grained quartz, chalcedony, adularia, sericite, calcite, barite, fluorite, illite, hollandite, pyrite, minerals of thallium, antimony, arsenic, tellurium and mercury. Geochemical association of elements – Au-As-Sb-Tl-Te-Hg. Finely dispersed native gold of primary ores with a size of no more than 0.005 mm is found in oxidized pyrite enriched with Sb, As and Hg, as well as in association with minerals of thallium and mercury. In friable karst formations, the residual gold was released and enlarged to 0.1–0.5 mm. High-grade supergenic gold is characterized by a spongy structure and an admixture of Hg. A new mineral, thallium tellurate Tl2TeO6 – amgaite, has been discovered in the ores. The substantiation of the highly productive Carlin type of gold mineralization of the Khokhoy deposit will serve as the basis for the revision and revaluation of the Kuranakh type in the area of the Aldan shield.

About the authors

L. A. Kondratieva

Diamond and Precious Metals Geology Institute, Siberian Branch, Russian Academy of Sciences

Email: lkon12@yandex.ru
Lenin Avenue, 39, Yakutsk, 677981

G. S. Anisimova

Diamond and Precious Metals Geology Institute, Siberian Branch, Russian Academy of Sciences

Email: gsanisimova1952@mail.ru
Lenin Avenue, 39, Yakutsk, 677981

E. P. Sokolov

Yakutskgeologiya Joint Stock Company

Email: geol63@mail.ru
Kalvitsa St., 24, Yakutsk, 677000

V. N. Kardashevskaia

Diamond and Precious Metals Geology Institute, Siberian Branch, Russian Academy of Sciences

Email: kardashevskaya92@mail.ru
Lenin Avenue, 39, Yakutsk, 677981

References

  1. Анисимова Г.С., Кондратьева Л.А., Соколов Е.П., Кардашевская В.Н. Золотое оруденение лебединского и куранахского типов в Верхнеамгинском районе (Южная Якутия) // Отечественная геология. 2018. № 5. С. 3–13.
  2. Анисимова Г.С., Кондратьева Л.А., Кардашевская В.Н. Вейссбергит (TlSbS2) и авиценнит (Tl2O3) – редкие минералы таллия. Первые находки в Якутии // Зап. РМО. 2021. № 2. С. 18–27.
  3. Бойцов В.Е., Верчеба А.А., Пилипенко Г.Н., Жданов А.В. Металлогеническое районирование Центрально-Алданского рудного района Республики Саха (Якутия) // Известия высших учебных заведений. Геология и разведка. 2010. № 5. С. 23-32.
  4. Брадинская Е.М., Развозжаева Э.А., Виленкин Э.А., Баранкевич В.Г. Золотосодержащие углеродистые вещества в первичных рудах некоторых месторождений Центрального Алдана // ДАН СССР. 1981. Т. 260. № 2. С. 282–284.
  5. Ветлужских В.Г., Ким А.А. Геолого-промышленные типы золоторудных месторождений Южной Якутии // Отечественная геология. 1997. № 1. С. 16–24.
  6. Ветлужских В.Г., Казанский В.И., Кочетков А.Я., Яновский В.М. Золоторудные месторождения Центрального Алдана // Геология руд. месторождений. 2002. Т. 44. № 6. С. 467–499.
  7. Викентьев И.В., Тюкова Е.Э., Мурзин В.В., Викентьева О.В., Павлов Л.Г. Воронцовское золоторудное месторождение. Геология, формы золота, генезис. Екатеринбург, Форт Диалог-Исеть, 2016. 206 с.
  8. Волков А.В., Серафимовский Т., Кочнева Н.Т. и др. Au-As-Sb-Tl эпитермальное месторождение Алшар (Южная Македония) // Геология руд. месторождений. 2006. Т. 48. № 3. С. 205–224.
  9. Волков А.В., Сидоров А.А. Геолого-генетическая модель месторождений золота карлинского типа // Литосфера. 2016. № 6. С. 145–165.
  10. Горошко М.В., Каплун Б.М., Малышев Ю.Ф., Романовский Н.Л., Гурович В.Г. Глубинное строение, магматизм, металлогения Центрально-Алданского блока Алдано-Станового щита // Тихоокеанская геология. 2010. Т. 29. № 4. С. 3–18.
  11. Дворник Г.П. Золоторудные метасоматические формации Центрально-Алданского района // Литосфера. 2012. № 2. С. 90–105.
  12. Казаринов А.И. К вопросу о генезисе золоторудных месторождений куранахского типа // Золоторудные формации Дальнего Востока. М.: Наука, 1969. С. 125–135.
  13. Ким А.А. Золото-теллуридно-селенидная минерализация в Куранахском месторождении (Центральный Алдан) // Зап. ВМО. 2000. № 5. C. 51–57.
  14. Ким A.A., Заякина Н.В., Лаврентьев Ю.Г. Яфсоанит, (Zn1.38Ca1.36Pb0.26)3TeO6 – новый минерал теллура // Зап. ВМО. 1982. 111(1). С. 118–121.
  15. Ким А.А., Заякина Н.В., Лаврентьев Ю.Г., Махотко В.Ф. V,Si-разновидность дугганита – первая находка в СССР // Минералогический журнал. 1988. Т. 10. № 6. С. 85–89.
  16. Ким А.А., Заякина Н.В., Махотко В.Ф. Куксит Pb3Zn3TeO6(PO4)2 и черемныхит Pb3Zn3TeO6(VO4)2 – новые теллураты из Куранахского золоторудного месторождения (Центральный Алдан, Южная Якутия) // Зап. ВМО. 1990. Вып. 5. С. 50–57.
  17. Кондратьева Л.А., Анисимова Г.С. Минералы ртути, таллия и мышьяка Хохойского месторождения, Алданский щит // Геология и минерально-сырьевые ресурсы Северо-Востока России [Электронный ресурс]: материалы XII Всероссийской научно-практической конференции, посвященной 65-летию Института геологии алмаза и благородных металлов Сибирского отделения РАН, 23-25 марта 2022 г. / [Отв. ред. В.Ю. Фридовский]. Якутск: Издательский дом СВФУ, 2022. 1 электрон. опт. диск. С.184–188.
  18. Кочетков А.Я. Мезозойские золотоносные рудно-магматические системы Центрального Алдана // Геология и геофизика. 2006. Т. 47. № 7. С. 850–864.
  19. Кутырев Э.И. Карстовые месторождения / Э.И. Кутырев, Б.М. Михайлов, Ю.С. Ляхницкий. Л. СПб.: Недра, 1989. 311 с.
  20. Мурзин В.В., Сазонов В.Н., Ронкин Ю.Л. Модель формирования Воронцовского золоторудного месторождения на Урале (карлинский тип): новые данные и проблемы // Литосфера. 2010. 6. С. 66–73.
  21. Родионов Ю.Н. Новый тип золотого оруденения в Сетте-Дабане // Руды и металлы. 1995. № 4. С. 77–83.
  22. Угрюмов А.Н., Дворник Г.П. Метасоматические формации и золотая минерализация в рудном районе мезозойской тектоно-магматической активизации (Алданский Щит) // Известия УГГГА. Серия: Геология и геофизика. 2000. Вып. 10. С. 119–128.
  23. Шевырёв Л.Т. Закономерности в распределении летучих элементов в поверхностной оболочке Земли: вероятная историко-минерагеническая интерпретация. Статья 3. Таллий // Вестник ВГУ. Серия: Геология. 2015. № 3. С. 5–16.
  24. Эйриш Л.В. К перспективам выявления на Дальнем Востоке России месторождений карлинского типа // Тихоокеанская геология. 1998. № 17 (4). С. 72–79.
  25. Яблокова С.В., Дубакина Л.С., Дмитрак А.Л., Соколова Т.В. Куранахит – новый гипергенный минерал теллура // Зап. ВМО. 1975. Вып. 3. C. 310–313.
  26. Anisimova G.S., Kondratieva L.A., Kardashevskaia V.N. Characteristics of Supergene Gold of Karst Cavities of the Khokhoy Gold Ore Field (Aldan Shield, East Russia) // Minerals 2020, 10, 139.
  27. Anisimova G.S., Kondratieva L.A., Kardashevskaia V.N. Weissbergite (TlSbS2) and Avicennite (Tl2O3), Rare Thallium Minerals: First Findings in Yakutia // Geology of Ore Deposits. 2022. V. 64. № 7. P. 424–431.
  28. Alvarez A.A., Noble D.C. Sedimentary Rock-Hosted Disseminated Precious Metal Mineralization at Purisima Concepcion, Yauricocha District, Central Peru // Econ. Geol. 1988. V. 83. P. 1368–1378.
  29. Arehart G.B., Foland K.A., Naeser C.W., Kesler S.E. 40Ar/39Ar, K/Ar and Fission Track Geochronology of the Sedimenthosted Gold Deposits at Post-Betze, Carlin Trend, Northeastern Nevada // Econ. Geol. 1993. V. 88. P. 622–646.
  30. Arehart G.B. Characteristics and origin of sediment-hosted disseminated gold deposits: A review // Ore Geol. Rev. 1996. V. 11. P. 383–403.
  31. Berger B.R., Bagby W.C. The geology and origin of Carlin-type gold deposits; in Gold Metallogeny and Exploration // R.P. Foster, Editor, Blackie, Glasgow and London, 1991, p. 210–248. https://doi.org/10.1007/978-1-4613-0497-5_7
  32. Christensen O.D. Carlin trend geologic overview; in Gold Deposits of the Carlin Trend, Nevada // O.D. Christensen, Editor, Society of Economic Geologists, Guidebook Series, 1993. V. 18. P. 12–26.
  33. Christensen O.D. Wall rock alteration in Carlin-type sedimentary-rock-hosted gold deposits; in Models in Base and Precious Metals // Short Course notes, Northwest Mining Association, 1994/ 11 p.
  34. Christensen O., Garwin S.L. Mitchell P.A. Carlin-type sedimentary rock-hosted disseminated gold deposits around the Pacific; in New Mineral Deposit Models for the Cordillera // Short Course Notes, Northwest Mining Association, 1996. P. E1–E34.
  35. Cvetković L., Boronikhin V.A., Pavićević M.K., Krajnović D., Gržetić I., Libowitzky E., Giester G., Tillmanns E. Jankovićite, Tl5Sb9(As,Sb)4S22, a new Tl-sulfosalt from Allchar, Macedonia // Mineralogy and Petrology. 1995. 53. P. 125–131.
  36. John Z., Picot P., Hak J., Kvaček M. La parapierrotite, un nouveau minéral thallifère d'Allchar (Yougoslavie) // Tschermaks Mineralogische und Petrographische Mitteilungen, 1975. 22. P. 200–210.
  37. Cline J.S., Hofstra A.H., Muntean J.L., Tosdal R.M., Hickey K.A. Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models: Economic Geology 100th Anniversary Volume, 2005. P. 451–484.
  38. Groves D.A. End members of the deposit spectrum on the Carlin Trend: examples from recent discoveries; in New Mineral Deposit Models for the Cordillera; Cordilleran Roundup, Short Course Notes, B.C. Ministry of Employment and Investment, 1996. P. D1–D35.
  39. Hofstra A.H., Cline J.S. Characteristics and models for Carlintype gold deposits: Reviews in Economic Geology, 2000. V. 13. P. 163–220.
  40. Hofstra A.H., Snee L.W., Rye R.O., Folger H.W., Phinisey J.D., Loranger R.J., Dahl A.R., Naeser C.W., Stein H.J., Lewchuk M. Age constraints on Jerritt Canyon and other Carlin-type gold deposits inthe western United States – relation to mid- Tertiary extension and magmatism // Econ Geol. 1999. 94. P. 769–802.
  41. Hofstra A.H., Leventhal J.S., Northrop H.R., Landis G.P., Rye R.O., Birak D.J., Dahl A.R. Genesis of sediment-hosted disseminated gold deposits by fluid mixing and sulfidation: chemical reaction path modeling of ore-depositional processes documented in the Jerritt Canyon district, Nevada // Geology. 1991. 19. P. 36–40.
  42. Hu Rui-Zhong, Su Wen-Chao, Bi Xian-Wu, Tu Guang-Zhi, Albert H. Hofstra Geology and geochemistry of Carlin-type gold deposits in China // Mineralium Deposita. 2002. 37. P. 378–392. https://doi.org/10.1007/s00126-001-0242-7
  43. Ilchik R.P., Barton M.D. An amagmatic origin of Carlin-type gold deposits // Econ. Geol. 1997. V. 92. P. 269–288.
  44. Kasatkin A.V., Anisimova G.S., Nestola F., Plášil J., Sejkora J., Škoda R., Sokolov E.P., Kondratieva L.A., Kardashevskaia V.N. Amgaite, Tl3+2Te6+O6, a New Mineral from the Khokhoyskoe Gold Deposit, Eastern Siberia, Russia. Minerals 2022. 12. P. 1064.
  45. Kesler S.E., Fortuna J., Ye Z., Alt J.C., Core D.P., Zohar P., Borhauer J., Chryssoulis S.L. Evaluation of the role of sulfidation in deposition of gold, Screamer section of the Betze-Post Carlin-type deposit, Nevada // Econ. Geol. 2003. V. 98. P. 1137–1157.
  46. Khomich V., Shcheka S., Boriskina N. Geodynamic factors in the formation of large gold-bearing provinces with Carlin-type deposits on continental margins in the North Pacific // AIMS Geosciences, 2023, 9(4): 672–696. https://doi.org/10.3934/geosci.2023036
  47. Kondratieva L.A., Anisimova G.S., Kardashevskaia V.N. Types of Tellurium Mineralization of Gold Deposits of the Aldan Shield (Southern Yakutia, Russia). Minerals 2021. 11. P. 698.
  48. Lefebure D.V., Brown D.A., Ray G.E. The British Columbia sediment-hosted gold project // British Columbia. Geological Survey Geological Fieldwork 1998, Paper 1999-1. P. 165–178.
  49. Li Z., Peters S.G. Comparative geology and geochemistry of sedimentary rock-hosted (Carlin-type) gold deposits in the People’s Republic of China in Nevada, USA // Open-File Report, 1998. P. 98–466, US Geological Survey
  50. Longerich H.P., Jackson S.E., Günther D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation // J. Anal. Atomic Spectrom. 1996. 11. P. 899–904.
  51. Maksimov E.P., Uyutov V.I., Nikitin V.M. The Central Aldan gold-uranium ore magmatogenic system, Aldan-Stanovoy shield, Russia. Russ. // J. Pac. Geol. 2010. 4. P. 95–115.
  52. Maslennikov V.V., Cherkashov G.A., Firstova A.V., Ayupova N.R., Beltenev V.E., Melekestseva I.Y., Artemyev D.A., Tseluyko A.S., Blinov I.A. Trace Element Assemblages of Pseudomorphic Iron Oxyhydroxides of the Pobeda-1 Hydrothermal Field, 17°08.7′ N, Mid-Atlantic Ridge: The Development of a Halmyrolysis Model from LA-ICP-MS Data // Minerals. 2023. № 13. P. 4.
  53. Muntean J., Cline J., Simon A. et al. Magmatic–hydrothermal origin of Nevada’s Carlin-type gold deposits // Nature Geosci. 2011. 4. P. 122–127. https://doi.org/10.1038/ngeo1064
  54. Murzin V.V., Sazonov V.N., Grigoriev N.A., Ryabinin V.F. A genetic model for Carlin-type gold ores in the Urals August 1990 https://doi.org/10.13140/2.1.3079.7443 Conference: Eighth Quadrennial IAGOD Symp.At: Ottawa, CanadaVolume: Proceeding of the Eighth Quadrennial IAGOD Symp. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart. 1990. P. 647–652.
  55. Palinkaš S.S., Hofstra A.H., Percival T.J., Šoštari´c S.B., Palinkaš L., Bermanec V., Pecskay Z., Boev B. Comparison of the Allchar Au-As-Sb-Tl Deposit, Republic of Macedonia, with Carlin-Type Gold Deposits // Reviews in Economic Geology. 2018. V. 20. P. 335–363.
  56. Paton C., Hellstrom J., Paul B., Woodhead J., Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. // J. Anal. Atomic Spectrom. 2011. 26. P. 2508–2518.
  57. Pekov I.V., ZubkovaN.V., Belakovskiy D.I., Yapaskurt V.O., Vigasina M.F., Lykova I.S., SidorovE.G., Pushcharovsky D.Y. Chrysothallite K6Cu6Tl3+Cl17(OH)4 ·H2O, a new mineral species from the Tolbachik volcano, Kamchatka, Russia // Miner. Mag. 2015. V. 79. P. 365–37.
  58. Pekov I.V., Krzhizhanovskaya M.G., Yapaskurt V.O., Belakovskiy D.I., Sidorov, E.G. Kalithallite, IMA 2017-044. CNMNC Newsletter No. 39, October 2017, page 1280 // Miner. Mag. 2017. 81. P. 1279–1286.
  59. Percival T.J., Radtke A.S. Sedimentary-rock-hosted disseminated gold mineralization in the Alsar District, Macedonia // The Canadian Mineralogist. 1994. V. 32. P. 649–665.
  60. Radtke A.S. Geology of the Carlin gold deposit, Nevada // U.S. Geological Survey Professional Paper. 1985. 1267. 221 p.
  61. Radtke A.S., Rye R.O., Dickson F.W. Geology and stable isotope studies of the Carlin gold deposit, Nevada // Econ. Geol. 1980. V. 75. P. 641–672.
  62. Rodionov S.M., Fredericksen R.S., Berdnikov N.V., Yakubchuk A.S. The Kuranakh epithermal gold deposit (Aldan Shield, East Russia) // Ore Geol. Rev. 2014. 59. P. 55–65.
  63. Schroeter T.G., Poulsen K.H. Carbonatehosted disseminated Au-Ag / in Selected British Columbia Mineral Deposit Profiles, Volume 2, D.V. Lefebure, and T. Hoy, Editors, B.C. Ministry of Employment and Investment, Open File 1996, 13. P. 9–12.
  64. Simon G., Kesler S.E., Chryssoulis S. Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: implications for deposition of gold in Carlin-type deposits // Econ Geol. 1999. V. 94. P. 405–421.
  65. Sillitoe R.H., Bonham H.F.Jr. Sediment-hosted gold deposits: distal products of magmatic-hydrothermal systems // Geology. 1990. V. 18. P. 157–161.
  66. Su W., Dong W., Zhang X., Shen N., Hu R., Hofstra A.H., Cheng L., Xia Y., Yang K. Carlin-Type Gold Deposits in the Dian-Qian-Gui “Golden Triangle” of Southwest China // Reviews in Economic Geology. V. 20. P. 157–185.
  67. Vikentyev I.V., Tyukova E.E., Vikent′eva O.V., Chugaeva A.V., Dubinina E.O., Prokofiev V.Yu., Murzin V.V. Vorontsovka Carlin-style gold deposit in the North Urals: mineralogy, fluid inclusion and isotope data for genetic model // Chemical Geology. 2019. 508. P. 144–166.
  68. Zhou T., Goldfarb R.J., Phillips G. Neil Tectonics and distribution of gold deposits in China – an overview // Mineralium Deposita. 2002. 37 P. 249–282. https://doi.org/10.1007/s00126-001-0237-4.
  69. Соколов Е.П., Протопопов Г.Х, Терентьев В.Н. Отчет о результатах выполненных работ по объекту №120-71 (111-76) «Опережающие геолого-геофизические и геохимические работы на золото и алмазы на Верхнеамгинской площади (Республика Саха (Якутия)» Государственный контракт № 08/12 от 30 марта 2012 г., лицензии на пользование недрами ЯКУ 03178 БП в 3 книгах и 2 папках. Якутск, 2014 г.
  70. Соколов Е.П., Терентьев В.Н., Ядрихинский А.М. и др. Отчет о результатах работ, выполненных в 2015-2017 г.г. по объекту «Поисковые работы на рудное золото в пределах Верхнеамгинской площади (Республика Саха (Якутия))» в 4 книгах и двух папках. Якутск, Геолинформ, 2017г.
  71. Пахомов Ф.П., Антонова Т.В. Технико-экономическое обоснование временных разведочных кондиций для подсчета запасов рудного золота на участке недр Хохой (Хохойское рудное поле) и подсчет запасов по состоянию на 01.01.2023 (Лицензия ЯКУ 06711 БП) в 3 книгах, 1 папке. Книга 1. Геологическое обоснование кондиций, расчет запасов. Якутск, 2024 г.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».