230Th/U DATING OF SEAFLOOR MASSIVE SULFIDES FROM SEMENOV-5 HYDROTHERMAL FIELD, MID-ATLANTIC RIDGE

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Dating of seafloor massive sulfides (SMS) forming on the ocean floor is a complex task, largely due to the multistage deposition of ore minerals and the influence of changing physicochemical conditions on the isotopic geochemical system during the interaction of hydrothermal fluids with host rocks and near-bottom seawater. Based on data obtained for the ultramafic hosted Semenov-5 field of the Mid-Atlantic Ridge (MAR), the possibilities and limitations of the 230Th/U method are demonstrated, particularly concerning the formation of the radiometric system in environment above and below the paleo-seafloor level. Age of surface ores is ranging from ~60 to ~8 thousand years. However, dating of subsurface sulfides was not possible due to the minimal input of near-bottom seawater in the deposition process beneath the seafloor. The study indicates that massive sulfides formed beneath the seafloor are of metasomatic origin, suggesting that massive sulfide mineralization may not be confined to the paleo-seafloor but could extend to greater depths. This finding has significant implications for other sulfide deposits within the MAR as well and may lead to a reassessment of their resource potential. The age dating of SMS from Semenov-5 field is comparable with other fields within the Semenov cluster. The data obtained highlight the long and complex history of hydrothermal circulation and massive sulfide formation within ultramafic rocks of ocean core complexes in slow-spreading mid-ocean ridges.

Sobre autores

V. Kuznetsov

St. Petersburg State University; Herzen University

St. Petersburg, Russia

G. Cherkashov

St. Petersburg State University; VNII Okeangeologia

St. Petersburg, Russia

A. Firstova

VNII Okeangeologia

St. Petersburg, Russia

K. Kuksa

St. Petersburg State University; VNII Okeangeologia

Email: kkuksa@gmail.com
St. Petersburg, Russia

F. Maksimov

St. Petersburg State University

St. Petersburg, Russia

S. Boltramovich

St. Petersburg State University

St. Petersburg, Russia

V. Grigoriev

St. Petersburg State University

St. Petersburg, Russia

A. Taydulov

St. Petersburg State University; VNII Okeangeologia

St. Petersburg, Russia

T. Stepanova

VNII Okeangeologia

St. Petersburg, Russia

V. Bel'tenev

VNII Okeangeologia

St. Petersburg, Russia

A. Sukhanova

VNII Okeangeologia

St. Petersburg, Russia

Bibliografia

  1. Бортников Н.С., Викентьев И.В. Современное сульфидное полиметаллическое минералообразование в Мировом океане // Геология руд. месторождений. 2005. Т. 47. № 1. С. 16–50.
  2. Кузнецов В.Ю. Радиохронология четвертичных отложений. СПб.: Комильфо, 2008. 312 с.
  3. Кузнецов В.Ю., Максимов Ф.Е. Методы четвертичной геохронометрии в палеогеографии и морской геологии. СПб.: Наука, 2012. 191 с.
  4. Кузнецов В.Ю., Черкашёв Г.А., Бельтенёв В.Е., Леин А.Ю., Максимов Ф.Е., Шилов В.В., Степанова Т.В. 230Th/U-датирование сульфидных руд океана: методические возможности, результаты измерений и перспективы использования // Докл. РАН. 2007. Т. 416. № 5. С. 666–669.
  5. Леин А.Ю., Черкашев Г.А., Ульянов А.А., Ульянова Н.В., Степанова Т.В., Сагалевич А.М., Богданов Ю.А., Гурвич Е.Г., Торохов М.П. Минералогия и геохимия сульфидных руд полей Логачев-2 и Рейнбоу: черты сходства и различия // Теохимия. 2003. № 3. С. 304–328.
  6. Марков В.Ф., Самоваров М.Л, Лазарева Л.И. и др. Отчет по объекту “Поисковые работы на глубоководные полиметаллические сульфиды на участке 16°38’ с. ш. Среднично-Атлантического хребта; опытно-методические работы по программе ЮНЕСКО”. Ломоносов, 2007. 221 с.
  7. Масленников В.В., Зайков В.В. Колчеданопосные поля окраинно-океанических структур Урала (классификация, рудные фации, модель развития). Мисс.: ИМин УрО РАН, 1998. 92 с.
  8. Перцев А.Н., Бортников Н.С., Власов Е.А., Бельтенев В.Е., Добрецова И.Г., Агеева О.А. Современные колчеданные залежи рудного района Семенов (Среднично-Атлантический хребет, 13°31’ с. ш.): характеристика ассоциирующих пород внутреннего океанического комплекса и их гидротермальные изменения // Геология руд. месторождений. 2012. Т. 54. № 5. С. 400–415.
  9. Черкашёв Г.А., Иванов В.Н., Бельтенёв В.И., Лазарева Л.И., Рождественская И.И., Самоваров М.Л., Порошина И.М., Сергеев М.Б., Степанова Т.В., Добрецова И.Г., Кузнецов В.Ю. Сульфидные руды северной приэкваториальной части Среднично-Атлантического хребта // Океанология. 2013. Т. 53. № 5. С. 680–693.
  10. Черкашёв Г.А., Степанова Т.В., Андреев С.И., Фирстова А.В., Егоров И.В., Бельтенёв В.Е., Иванов В.Н., Самоваров М.Л., Рождественская И.И., Лазарева Л.И., Добрецова И.Г., Бабаева С.Ф. Рудные объекты в пределах Российского Разведочного Района в северной приэкваториальной части среднично-атлантического хребта // Мировой Океан. Т. III. Твердые полезные ископаемые и газовые гидраты в океане. Под ред. Л.И. Лобковского, Г.А. Черкашева, М.: Научный мир, 2018. С. 60–75.
  11. Beltenev V., Ivanov V., Rozhdestvenskaya I., Cherkashov G., Stepanova T., Shilov V., Pertsev A., Davydov M., Egorov I., Melekestseva I., Narkevsky E., Ignatov V. Hydrothermal field at 13°30’ N on the Mid-Atlantic Ridge // International Research. 2007. V. 16. P. 9–10.
  12. Beltenev V., Ivanov V., Rozhdestvenskaya I., Cherkashov G., Stepanova T., Shilov V., Davydov M., Laiba A., Kaylio V., Narkevsky E., Pertsev A., Dobretzova I., Gustaytis A., Popova Ye., Amplieva Ye., Evrard C., Moskalev L., Gebruk A New data about hydrothermal fields on the Mid-Atlantic Ridge between 11° - 14°N: 32nd Cruise of R/V Professor Logatchev // InterRidge News 13. 2009. V. 18. P. 13–17.
  13. Bogdanov Yu.A., Bortnikov N.S., Vikent'ev I.V., Lein A.Yu., Gurvich E.G., Sagalevich A.M., Simonov V.A., Ikorskii S.V., Stavrova O.O., Apollonov V.N. Mineralogical-Geochemical Peculiarities of Hydrothermal Sulfide Ores and Fluids in the Rainbow Field Associated with Serpentinites, Mid-Atlantic Ridge (36°14’ N) // Geology of Ore Deposits. 2002. V. 44. № 6. 2002. P. 444–473.
  14. Cannat M., Mangeney A., Ondreas H., Fouquet Y., Normand A. High-resolution bathymetry reveals contrasting landslide activity shaping the walls of the Mid-Atlantic Ridge axial valley // Geochem. Geophys. Geosyst. 2013. V. 14. P. 996–1011. https://doi.org/10.1002/ggge.20056
  15. Chen G.J., Wasserburg K.L., von Damm, Edmond J.M., The U-Th-Pb systematic in hot springs of the East Pacific Rise at 21°N and Guaymas Basin // Geochim. Cosmochim. Acta. 1986. V. 50. P. 2467–2479.
  16. Cherkashov G.A., Firstova A.V., Bich A.S., Kuksa K.A., Sukhanova A.A., Yakovenko E.S., Stepanova T.V., Kuznetsov V.Yu., Musatov A.E., Petrov A.Yu., Maksimov F.E., Bel’tenev B.E. Geochronological Study of Hydrothermal Precipitates in the Northern Equatorial Area of the Mid-Atlantic Ridge // Geotectonics. 2023. V. 57 (Suppl. 1). P. 69–83. https://doi.org/10.1134/S001685212307004X
  17. Cherkashov G., Kuznetsov V., Kuksa K., Tabuns E., Maksimov F., Bel'tenev V. Sulfide geochronology along the Northern Equatorial Mid-Atlantic Ridge // Ore Geol. Rev. 2017. V. 87. P. 147–154.
  18. Firstova A., Cherkashov G., Stepanova T., Sukhanova A., Poroshina I., Bel'tenev V. New data for the internal structure of ultramafic hosted seafloor massive sulfide (SMS) deposits: Case study of the Semenov-5 hydrothermal field (13°31’ N, MAR) // Minerals. 2022. V. 12. P. 1593. https://doi.org/10.3390/min12121593
  19. Hannington M.D., Galley A.G., Herzig P.M., Petersen S. Comparison of the TAG mound and stockwork complex with Cyprus-type massive sulfide deposits // Herzig P.M., Humphris S.E., Miller D.J., and Zierenberg R.A. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results. 1998. V. 58. P. 389–415.
  20. Krasnov S., Stepanova T., Stepanov M. Chemical composition and formation of a massive sulfide deposit, Middle Valley, Northern Juan de Fuca Ridge (Site 856) // Mortl M.J., Davis E.E., Fisher A.T., and Slack J.F. (Eds.). Proceedings of the Ocean Drilling Program, Scientific Results. 1994. V. 139. P. 353–372.
  21. Kuznetsov V., Maksimov F., Zheleznov A., Cherkashov G., Bel’tenev V., Lazareva L. 230Th/U chronology of ore formation within the Semvenov hydrothermal district (13°31’ N) at the Mid-Atlantic Ridge // Geochronometria. 2011. V. 38. Iss. 1. P. 72–76.
  22. Kuznetsov V., Cherkashev G., Lein A., Maksimov F., Arslanov Kh., Stepanova T., Chernov S., Tarasenko D. 230Th/U dating of massive sulfides from the Logatchev and Rainbow hydrothermal fields (Mid-Atlantic Ridge) // Geochronometria. 2006. V. 26. P. 51–56.
  23. Kuznetsov V., Tabuns E., Kuksa K., Cherkashov G., Maksimov F., Bel’tenev V., Lazareva L., Zhenkisov I., Grigoriev V., Baranova N. The oldest seafloor massive sulfide deposits at the Mid-Atlantic ridge: 230Th/U chronology and composition // Geochronometria. 2015. V. 42. № 1. P. 100–106.
  24. Kuznetsov V., Cherkashov G., Kuksa K., Fristova A., Maksimov F., Bel’tenev V., Lazareva L., Levchenko S., Baranova N. Chronology of seafloor massive sulfides formation within the Pobeda hydrothermal cluster (Mid-Atlantic Ridge) // Geochronometria. 2020. V. 47. № 1. P. 63–70.
  25. Lalou C., Thompson G., Rona P.A., Brichet E., Jehanno C. Chronology of selected hydrothermal Mn oxide deposits from the trans-Atlantic geotraverse “TAG” area, Mid-Atlantic Ridge 26°N // Ceochim. Cosmochim. Acta. 1986. V. 50. P. 1737–1743.
  26. Lalou C., Thompson G., Arnold M., Brichet E., Druffie E., Rona P.A. Geochronology of TAG and Snake-Pit hydrothermal fields, MAR: Witness to a long and complex hydrothermal history // Earth and Planet. Sci. Lett. 1990. V. 97. P. 113–128.
  27. Lalou C., Reyss J.-L., Brichet E., Arnold M., Thompson G., Fouquet Y., Rona P.A. New age data for Mid-Atlantic Ridge hydrothermal sites: TAG and Snakepit chronology revisited // JRG Solid Earth. 1993. V. 98. № 6. P. 9705–9713.
  28. Lalou C., Reyss J.L., Brichet E., Krasnov S., Stepanova T., Cherkashev G., Markov V. Initial chronology of a recently discovered hydrothermal field at 14°45'N, Mid-Atlantic Ridge // Earth and Planet. Sci. Lett. 1996. V. 144. P. 483–490.
  29. Lalou C., Reyss J.L., Brichet E. Age of sub-bottom sulfide samples at the TAG active mound // Proceedings of the Ocean Drilling Program, Scientific Results. Herzig P.M., Humphris S.E., Miller D.J., and Zierenberg R.A. (Eds.). 1998. V. 158. P. 11–117.
  30. Marques A.F.A., Barriga F., Chavagnac V., Fouquet Y. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge // Mineralium Deposita. 2006. V. 41. P. 52–67. https://doi.org/10.1007/s00126-005-0040-8
  31. Marques A.F.A., Barriga F.J.A.S., Scott S.D. Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu–Zn–(Co)-rich massive sulfides // Marine Geology. 2007. V. 245. P. 20–39.
  32. Meng X., Jin X., Li X., Chu F., Zhu J., Wang Y., Zhou P. Subseafloor mineralization related to the shallow seawater-hydrothermal circulation system in the Longqi hydrothermal field, Southwest Indian Ridge (49.6°E): Evidence from in situ trace element and sulfur isotope compositions of pyrite varieties // Ore Geol. Rev. 2022. V. 145. P. 104914.
  33. Munch U., Blum N., Halbach P. Mineralogical and geochemical features of sulfide chimneys from the MESO zone, Central Indian Ridge // Chemical Geology. 1999. V. 155. P. 29–44.
  34. Munch U., Lalou C., Halbach P., Fujimoto H. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56’ E – mineralogy, chemistry and chronology of sulfide samples // Chemical Geology. 2001. V. 177. P. 341–349.
  35. Sturm M.E., Golgstein S.J., Klein E.M., Karson J.A., Murrell M.T. Uranium-series age constraints on lava from the axial valley of the Mid-Atlantic Ridge, MARK area // Earth Planet. Sci. Lett. 2000. V. 181. P. 61–70.
  36. You C.F., Bickle M. Evolution of an active sea-floor massive sulphide deposit // Nature. 1998. V. 394. P. 668–671. https://doi.org/10.1038/29279

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».