Статистические исследования авроральной активности и возмущений геомагнитного поля на средних широтах

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

По данным магнитометров сетей INTERMAGNET, SuperMAG и IMAGE проведен статистический анализ суббуревой активности в авроральных широтах за 2007–2020 гг. и ее связи с магнитными возмущениями на средних широтах. Появления и развитие магнитных возмущений в авроральных широтах контролировалось по IL-индексу (подобен AL-индексу, но рассчитан по данным IMAGE). За период 2007–2020 гг. были отобраны события, которые наблюдались около меридиана сети IMAGE, в ночном секторе (21–03 MLT). Использовались две выборки событий: 1) IL < –200 нТл не менее 10 мин, с дополнительным критерием наличия или отсутствия положительных бухт на станции Панагюриште в Болгарии; 2) изолированные суббури, наблюдавшиеся на меридиане IMAG-E, согласно списка Ohtani and Gjerloev [2020]. Получены распределения IL-индекса, эмпирической и теоретической кумулятивной функции распределения, а также проведены оценки появления экстремальных событий. Показано, что, в целом, распределения IL хорошо описываются экспоненциальными функциями, и из всех событий в ~65% случаях наблюдались события, сопровождающиеся среднеширотными положительными бухтами, причем с ростом интенсивности возмущений их доля увеличивалась. Оказалось, что события с положительными бухтами в средних широтах и изолированные суббури лучше описываются распределением Вейбулла для экстремальных событий. Из обоих распределений выделены годовая и полугодовая вариации: годовые вариации имеют летний минимум и зимний максимум, полугодовые – максимумы около дней равноденствия, что, скорее всего, связано с эффектом Рассела-Макферрона. Показано также, что полугодовая вариация более выражена для событий с сопутствующими среднеширотными положительными бухтами.

Об авторах

Р. Вернер

Институт космических исследований и технологий Болгарской академии наук

Email: despirak@gmail.com
Болгария, Стара Загора

В. Гинева

Институт космических исследований и технологий Болгарской академии наук

Email: despirak@gmail.com
Болгария, Стара Загора

И. В. Дэспирак

Полярный геофизический институт

Email: despirak@gmail.com
Россия, (Мурманская обл.), Апатиты

А. А. Любчич

Полярный геофизический институт

Email: despirak@gmail.com
Россия, (Мурманская обл.), Апатиты

П. В. Сецко

Полярный геофизический институт

Email: despirak@gmail.com
Россия, (Мурманская обл.), Апатиты

А. Атанасов

Институт космических исследований и технологий Болгарской академии наук

Email: despirak@gmail.com
Болгария, Стара Загора

Р. Божилова

Национальный институт геофизики, геодезии и географии Болгарской академии наук

Email: despirak@gmail.com
Болгария, София

Л. Райкова

Институт космических исследований и технологий Болгарской академии наук

Email: despirak@gmail.com
Болгария, Стара Загора

Д. Валев

Институт космических исследований и технологий Болгарской академии наук

Автор, ответственный за переписку.
Email: despirak@gmail.com
Болгария, Стара Загора

Список литературы

  1. – Божилова Р. Автоматизирана система за събиране на геофиизични данни – приложение XLV // Сборник на “Национална конференция по въпроси на обучение по физика”, София, 6–9 Април 2017. С. 55–59. 2017.
  2. – Воробьев А.В., Пилипенко В.А., Сахаров Я.А., Селиванов В.Н. Статистические взаимосвязи вариаций геомагнитного поля, аврорального электроджета и геоиндуцированных токов // Солнечно-земная физика. Т. 5. № 1. С. 48‒58. 2019. https://doi.org/10.12737/szf-51201905
  3. – Дэспирак И.В., Любчич А.А., Клейменова Н.Г. “Полярные” и “высокоширотные” суббури и условия в солнечном ветре // Геомагнетизм и аэрономия. Т. 54. № 5. С. 619‒626. 2014. https://doi.org/10.7868/S0016794014050046
  4. – Дэспирак И.В., Клейменова Н.Г., Громова Л.И., Громов С.В., Малышева Л.М. Суперсуббури во время бурь 7–8 сентября 2017 г. // Геомагнетизм и аэрономия. Т. 60. № 3. С. 308–317. 2020. https://doi.org/10.31857/S0016794020030049
  5. – Дэспирак И.В., Сецко П.В., Сахаров Я.А., Любчич А.А., Селиванов В.Н., Валев Д. Наблюдения геомагнитных индуцированных токов на Северо-Западе России: отдельные случаи // Геомагнетизм и аэрономия. Т. 62. № 6. С. 721–733. 2022. https://doi.org/10.31857/S0016794022060037
  6. – Нусинов А.А., Руднева Н.М., Гинзбург Е.А., Дремухина Л.А. Сезонные вариации статистических распределений индексов геомагнитной активности // Геомагнетизм и аэрономия. Т. 55. № 4. С. 511–516. 2015. https://doi.org/10.7868/S0016794015040100
  7. – Яновский Б.М. Земной магнетизм. Л.: Издательство Ленинградского университета, 1978. 592 с.
  8. – Akasofu S.-I., Meng C.I. A study of polar magnetic substorms // J. Geophys. Res. V. 74. № 1. P. 293–313. 1969. https://doi.org/10.1029/JA074i001p00293
  9. – Bartels J. Terrestrial-magnetic activity and its relation to solar phenomena // Terr. Magn. Atmos. Electr. V. 37. № 1. P. 1–52. 1932. https://doi.org/10.1029/TE037i001p00001
  10. – Berthelier A. Influence of the polarity of the interplanetary magnetic field on the annual and the diurnal variations of magnetic activity // J. Geophys. Res.: Space Physics. V. 81. № 25. P. 4546–4552. 1976. https://doi.org/10.1029/JA081i025p04546
  11. – Boller B.R., Stolov H.L. Kelvin Helmholtz instability and the semiannual variation of geomagnetic activity // J. Geophys. Res. V. 75. № 31. P. 6073–6084. 1970. https://doi.org/10.1029/JA075i031p06073
  12. – Broun J.A. Observations in magnetism and meteorology made at Makerstoun in Scotland, in 1844. The Aurora Borealis // Trans. R. Soc. Edinburgh. V. 18. 401–402. 1848. https://doi.org/10.1017/S0080456800039077
  13. – Chu X. Configuration and generation of substorm current wedge, Los Angeles: University of California, Los Angeles, 2015. (A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Geophysics and Space Physics).
  14. – Cliver E.W., Kamide Y., Ling A.G. Mountains versus valleys: Semiannual variation of geomagnetic activity // J. Geophys. Res. V. 105. № A2. P. 2413–2424. 2000. https://doi.org/10.1029/1999JA900439
  15. – Coles S. An Introduction to Statistical Modeling of Extreme Values. Springer, London. 2001.
  16. – Cortie A.L. Sun-spots and terrestrial magnetic phenomena, 1898–1911: the cause of the annual variation in magnetic disturbances // Mon. Not. R. Astron. Soc. V. 73. № 1. P. 52–60. 1912. https://doi.org/10.1093/mnras/73.1.52
  17. – Davis T.N., Sugiura M., Auroral electrojet activity index AE and its universal time variations // J. Geophys. Res. V. 71. № 3. P. 785–801. 1966. https://doi.org/10.1029/JZ071i003p00785
  18. – Despirak I.V., Kleimenova N.G., Lubchich A.A., Malysheva L.M., Gromova L.I., Roldugin A.V., Kozelov B.V., Magnetic Substorms and Auroras at the Polar Latitudes of Spitsbergen: Events of December 17, 2012. Bull. Russian Acad. Sci: Physics. V. 86. № 3. P. 266–274. 2022. https://doi.org/10.3103/S1062873822030091
  19. – Echer E., Gonzalez W.D., Tsurutani B.T. Statistical studies of geomagnetic storms with peak Dst ≤ –50 nT from 1957 to 2008 // J. Atmospheric and Solar-Terrestrial Physics. V. 73. № 11–12. P. 1454–1459. 2011. https://doi.org/10.1016/j.jastp.2011.04.021
  20. – Fu H., Yue C., Zong Q.-G., Zhou X.-Z., Fu S. Statistical characteristics of substorms with different intensity // J. Geophys. Res.: Space Physics. V. 126. № 8. 2021. e2021JA029318. https://doi.org/10.1029/2021JA029318
  21. – Gjerloev J.W. A global ground-based magnetometer initiative // EOS Trans. AGU. V. 90. № 27. P. 230–231. 2009. https://doi.org/10.1029/2009EO270002
  22. – Gjerloev J.W. The SuperMAG data processing technique // J. Geophys. Res. V. 117. № A9. A09213. 2012. https://doi.org/10.1029/2012JA017683
  23. – Gopalswamy N. Chapter 2 – Extreme Solar Eruptions and their Space Weather Consequences / Extreme Events in Geospace – Origins, Predictability, and Consequences, edited by Natalia Buzulukova, Elsevier. P. 37–63. 2018. https://doi.org/10.1016/B978-0-12-812700-1.00002-9
  24. – Grubbs F.E., Beck G. Extension of Sample Sizes and Percentage Points for Significance Tests of Outlying Observations // Technometrics. V. 14. № 4. P. 847–854. 1972. https://doi.org/10.2307/1267134
  25. – Guo J., Feng X., Pulkkinen T.I., Tanskanen E.I., Xu W., Lei J., Emery B.A. Auroral electrojets variations caused by recurrent high-speed solar wind streams during the extreme solar minimum of 2008 // J. Geophys. Res. V. 117. № A4. A04307. 2012. https://doi.org/10.1029/2011JA017458
  26. – Guo J., Liu H., Feng X., Pulkkinen T.I., Tanskanen E.L., Liu C., Zhong D., Wang Z. // MLT and seasonal dependence of auroral electrojets: IMAGE magnetometer network observations // J. Geophys. Res.: Space Physics. V. 119. № 4. P. 3179–3188. 2014. https://doi.org/10.1002/2014JA019843
  27. – Iijima T., Potemra T.A. Large-scale characteristics of field aligned currents associated with substorms // J. Geophys. Res. V. 83. № 2. P. 599-615. 1978. https://doi.org/10.1029/JA083iA02p00599
  28. – Kamide Y., Akasofu S.-I. The auroral electrojet and global auroral features // J. Geophys. Res., V. 80. № 25. P. 3585–3602. 1975.https://doi.org/10.1029/JA080i025p03585
  29. – Kepko L., McPherron R.L., Amm O., Apatenkov S., Baumjohann W., Birn J., Lester M., Nakamura R., Pulkkinen T.I., Sergeev V. Substorm Current Wedge Revisite // Space Sci. Rev. V. 190. P. 1–46. 2015. https://doi.org/10.1007/s11214-014-0124-9
  30. – Lockwood M., Owens M.J., Barnard L.A., Haines C., Scott C.J., McWilliams K.A., Coxon J.C. Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 1. Geomagnetic data // J. Space Weather Space Clim. V. 10. Art. 23. 2020. https://doi.org/10.1051/swsc/2020023
  31. – Love J.J, Rigler E.J., Pulkkinen A., Riley P. On the lognormality of historical magnetic storm intensity statistics: Implications for extreme-event probabilities // Geophys. Res. Lett. V. 42. № 16. P. 6544–6553. 2015. https://doi.org/10.1002/2015GL064842
  32. – Lyatsky W., Tan A. Latitudinal effect in semiannual variation of geomagnetic activity // J. Geophys. Res. V. 108. № A5. 1204. 2003. https://doi.org/10.1029/2002JA009467
  33. – Matzka J., Stolle C., Yamazaki Y., Bronkalla O., Morschhauser A. The geomagnetic Kp index and derived indices of geomagnetic activity // Space Weather. V. 19. № 5. e2020SW002641. 2021. https://doi.org/10.1029/2020SW002641
  34. – McIntosh D.H. On the annual variation of magnetic disturbances // Philos. Trans. R. Soc. London, Series A, Mathematical and Physical Sciences. V. 251. № 1001. P. 525–552, 1959. https://doi.org/10.1098/rsta.1959.0010
  35. – McPherron R.L. Growth phase of magnetospheric substorms. J. Geophys. Res. V. 75. № 28. P. 5592–5599. 1970. https://doi.org/10.1029/JA075i028p05592
  36. – McPherron R.L., Russell C.T., Aubry M.P. Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms, J. Geophys. Res. V. 78. № 16. P. 3131–3149. 1973. https://doi.org/10.1029/JA078i016p03131
  37. – McPherron R.L. The use of ground magnetograms to time the onset of magnetospheric substorms // J. Geomag. Geoelectr. V. 30. № 3. P. 149–163. 1978. https://doi.org/10.5636/jgg.30.149
  38. – McPherron L.R., Chu X. The Mid-Latitude Positive Bay and the MPB Index of Substorm Activity // Space Sci. Rev. V. 206. P. 91–122. 2017. https://doi.org/10.1007/s11214-016-0316-6
  39. – McPherron L.R., Chu X. The midlatitude positive bay index and the statistics of substorm occurrence // J. Geophys. Res.: Space Physics. V. 123. № 4. P. 2831–2850. 2018. https://doi.org/10.1002/2017JA024766
  40. – Mikhailov A.V., Depuev V.Kh., Leschinskaya T.Yu. Geomagnetic activity threshold for F2-layer negative storms onset: Seasonal dependence // International J. Geomagnetism and Aeronomy. V. 6. № 1. 2005. https://doi.org/10.1029/2005GI000098
  41. – Murayama T. Origin of the semiannual variation of geomagnetic Kp indices // J. Geophys. Res.: Space Physics. V. 79. № 1. P.297–300. 1974. https://doi.org/10.1029/JA079i001p00297
  42. – Mursula K., Tanskanen E., Love J. Spring-fall asymmetry of substorm strength, geomagnetic activity and solar wind: Implications for semiannual variation and solar hemispheric asymmetry // Geophys. Res. Let. V. 38. № 6. L06104. 2011. https://doi.org/10.1029/2011GL046751
  43. – Nakamura M., Yoneda A., Oda M., Tsubouchi K. Statistical analysis of extreme auroral electrojet indices // Earth, Planets and Space. V. 67. Art. 153. 2015. https://doi.org/10.1186/s40623-015-0321-0
  44. – Newell P.T., Gjerloev J.W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power // J. Geophys. Res. V. 116. № A12. A12211. 2011a. https://doi.org/10.1029/2011JA016779
  45. – Newell P.T., Gjerloev J.W. Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices // J. Geophys. Res. V. 116. № A12. A12232. 2011b. https://doi.org/10.1029/2011JA016936
  46. – O’Brien P., McPherron R.L. Seasonal and diurnal variation of Dst dynamics // J. Geophys. Res. V. 107. № A11. 1341. 2002. https://doi.org/10.1029/2002JA009435
  47. – Ohtani S., Gjerloev J.W. Is the substorm current wedge an ensemble of wedgelets?: Revisit to midlatitude positive bays // J. Geoph. Res.: Space Physics. V. 125. № 9. e2020JA027902. 2020. https://doi.org/10.1029/2020JA027902
  48. – Rangarajan G.K., Iyemori T. Time variations of geomagnetic activity indices Kp and Ap: an update // Ann. Geophysicae. V. 15. № 10. P. 1271–1290. 1997. https://doi.org/10.1007/s00585-997-1271-z
  49. – Riley P. On the probability of occurrence of extreme space weather events // Space Weather. V. 10. № 2. S02012. 2012. https://doi.org/10.1029/2011SW000734
  50. – Russell C.T., McPherron R.L. Semiannual variation of geomagnetic activity // J. Geophys. Res. V. 78. № A1. P. 92–108. 1973. https://doi.org/10.1029/JA078i001p00092
  51. – Sabine E. On periodical laws discoverable in the mean effects of the larger magnetic disturbances – No. II // Philos. Trans. R. Soc. London. V. 142. P. 103–124, 1852. https://doi.org/10.1098/rstl.1852.0009
  52. – Sergeev V.A., Angelopoulos V., Kubyshkina M., Donovan E., Zhou X.-Z., Runov A., Singer H., McFadden J., Nakamura R. Substorm growth and expansion onset as observed with ideal ground-spacecraft THEMIS coverage // J. Geophys. Res. V. 116. A00I2. 2011. https://doi.org/10.1029/2010JA015689
  53. – Singh A.K., Rawat R., Pathan B.M. On the UT and seasonal variations of the standard and SuperMAG auroral electrojet indices // J. Geophys. Res.: Space Physics. V. 118. № 8. P. 5059–5067. 2013. https://doi.org/10.1002/jgra.50488
  54. – Svalgaard L., Cliver E.W., Ling A.G. The semiannual variation of great geomagnetic storms // Geophys. Res. Lett. V. 29. № 16. P. 12-1–12-4. 2002. https://doi.org/10.1029/2001GL014145
  55. – Tanskanen E.I. A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined // J. Geophys. Res. V. 114. № A5. A05204. 2009. https://doi.org/10.1029/2008JA013682
  56. – Thomson A.W.P., Dawson E.B., Reay S.J. Quantifying extreme behavior in geomagnetic activity // Space Weather. V. 9. № 10. S10001. 2011. https://doi.org/10.1029/2011SW000696
  57. – Tsubouchi K., Omura Y. Long-term occurrence probabilities of intense geomagnetic storm events // Space Weather. V. 5. № 12. S12003. 2007. https://doi.org/10.1029/2007SW000329
  58. –Tsurutani B.T., Hajra R. The interplanetary and Magnetospheric causes of Geomagnetically Inducted Currents (GICs) > 10A in the Mäntsälä Finland Pipeline:1999 through 2019 // J. Space Weather Clim. V.11. A23. 2021. https://doi.org/10.1051/swsc/2021001
  59. – Viljanen A., Tanskanen E.I., Pulkkinen A. Relation between substorm characteristics and rapid temporal variations of the ground magnetic field // Ann. Geophys. V. 24. № 2. P. 725–733. 2006. https://doi.org/10.5194/angeo-24-725-2006
  60. – Weibull W. A statistical distribution function of wide applicability // J. Appl. Mech.-Trans. ASME. V. 18. № 3. P. 293–297. 1951.
  61. – Werner R., Guineva V., Atanassov A., Bojilova R., Raykova L., Valev D., Lubchich A., Despirak I. Calculation of the horizontal power perturbations of the Earth surface magnetic field / Proceedings of the Thirteenth Workshop “Solar Influences on the Magnetosphere, Ionosphere and Atmosphere”, Primorsko, Bulgaria, 13–17 September 2021. P. 159–164. 2021. https://doi.org/10.31401/WS.2021.proc
  62. – Yermolaev Y.I., Lodkina I.G., Nikolaeva N.S., Yermolaev M.Y. Occurrence rate of extreme magnetic storms, J. Geophys. Res.: Space Physics. V. 118. № 8. P. 4760–4765. 2013. https://doi.org/10.1002/jgra.50467
  63. – Yoshida A. Physical meaning of the equinoctial effect for semi-annual variation in geomagnetic activity // Ann. Geophys. V. 27. P. 1909–1914. 2009. https://doi.org/10.5194/angeo-27-1909-2009

Дополнительные файлы


© Р. Вернер, В. Гинева, И.В. Дэспирак, А.А. Любчич, П.В. Сецко, А. Атанасов, Р. Божилова, Л. Райкова, Д. Валев, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».