Seismogenic Quasi-Stationary Electric Fields and Currents from Large-Scale Sources on the Earth’s Surface: Comparison of Model Representations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A comparative analysis of various model representations of seismogenic quasi-stationary electric fields/currents from large-scale sources on the Earth’s surface was carried out. It has been established that previously proposed analytical models of seismogenic quasi-stationary sources of electric field/current with field/current amplitudes continuously decreasing to zero at infinity are consistent with extreme values of electric field/current experimentally observed in epicentral zones before earthquakes. It is also shown that sharply spatially limited models of seismogenic sources of quasi-stationary electric fields/currents in the epicentral zones of future earthquakes on the Earth’s surface lead to their values being an order of magnitude or more greater than those actually observed.

About the authors

V. V. Hegai

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation

Author for correspondence.
Email: hegai@izmiran.ru
Russian Federation, Moscow, Troitsk

References

  1. Антонова В.П., Крюков С.В., Луценко В.Ю. Вариации атмосферного электрического поля на высокогорной станции Тянь-Шаня, обусловленные регулярными и спорадическими источниками // VIII Всероссийская конф. по атмосферному электричеству [с международным участием]: сб. трудов. Отв. ред. Г.Г. Щукин. СПб.: ВКА им. А.Ф. Можайского, 2019. С. 12—14.
  2. Мареев Е.А. Достижения и перспективы исследований глобальной электрической цепи // УФН. 2010. Т. 180. № 5. С. 527—534.
  3. Сидорин А.Я. Предвестники землетрясений. М.: Наука, 1992. 192 с.
  4. Смирнов С.Э. Вариации электрического поля земли в сейсмоактивном регионе как индикаторы сильных землетрясений и эруптивных явлений на Солнце: автореф. дис. … д-ра физ.-мат. наук. 25.00.29 — Физика атмосферы и гидросферы. Петропавловск-Камчатский: ИКИР ДВО РАН, 2018. https://www.ikir.ru/export/sites/ikir/ru/Publications/Dissertations/downloads/synopsisSmirnovSE.pdf
  5. Чернявский Е.А. Атмосферно-электрические предвестники землетрясений // Метеорология и гидрология в Узбекистане. Ташкент: АН УзССР, 1955. С. 317—327.
  6. Baumgaertner A.J.G., Thayer J.P., Neely III R.R., Lucas G. Toward a comprehensive global electric circuit model: Atmospheric conductivity and its variability in CESM1(WACCM) model simulations // J. Geophys. Res. Atmos. 2013. V. 118. № 16. P. 9221—9232. https://doi.org/10.1002/jgrd.50725
  7. Bowman D.D., Ouillon G., Sammis C.G., Sornette A., Sornette D. An observational test of the critical earthquake concept // J. Geophys. Res.-Sol. Ea. 1998. V. 103. № 10. P. 24359—24372. https://doi.org/10.1029/98jb0079228
  8. Conti L., Picozza P., Sotgiu A. A critical review of ground based observations of earthquake precursors // Front. Earth Sci., Sec. Geohazards and Georisks. 2021. V. 9. ID676766. https://doi.org/10.3389/feart.2021.676766
  9. Choudhury A., Guha A., De B.K., Roy R. A statistical study on precursory effects of earthquakes observed through the atmospheric vertical electric field in northeast India // Ann. Geophys. Italy. 2013. V. 56. № 3. ID R0331.
  10. Denisenko V.V., Boudjada M.Y., Lammer H. Propagation of seismogenic electric currents through the Earth’s atmosphere // J. Geophys. Res. Space. 2018a. V. 123. № 5. P. 4290—4297.
  11. Denisenko V.V., Nesterov S.A., Boudjada M.Y., Lammere H. A mathematical model of quasistationary electric field penetration from ground to the ionosphere with inclined magnetic field // J. Atmos. Sol.-Terr. Phy. 2018b. V. 179. P. 527—537.
  12. Dobrovolsky I.P., Zubkov S.I., Miachkin V.I. Estimation of the size of earthquake preparation zones // Pure Appl. Geophys. 1979. V. 117. № 5. P. 1025—1044. https://doi.org/10.1007/BF00876083
  13. Hao J. The anomalous of atmospheric electric field at the ground level and earthquakes // Acta Seismologica Sinica. 1988. V. 10. № 2. P. 207—212.
  14. Hao J.G., Tang T.M., Li D.R. A kind of information on short-term and imminent earthquake precursors — research on atmospheric electric field anomalies before earthquakes // Acta Seismologica Sinica. 1998. V. 11. № 1. P. 121—131.
  15. Hao J., Tang T.M., Li D.R. Progress in the research of atmospheric electric field anomaly as an index for short-impending prediction of earthquakes // Journal of Earthquake Prediction Research. 2000. V. 8. № 3. P. 241—255.
  16. Hegai V.V., Kim V.P., Liu J.Y. On a possible seismo-magnetic effect in the topside ionosphere // Adv. Space Res. 2015. V. 56. № 8. P. 1707—1713. https://doi.org/10.1016/j.asr.2015.07.034
  17. Hegai V., Zeren Z., Pulinets S. Seismogenic field in the ionosphere before two powerful earthquakes: possible magnitude and observed ionospheric effects (Case study) // Atmosphere. 2023. V. 14. № 5. ID819.
  18. Khegai V.V. Analytical model of a seismogenic electric field according to data of measurements in the surface layer of the midlatitude atmosphere and calculation of its magnitude at the ionospheric level // Geomagn. Aeron. 2020. V. 60. № 4. P. 507—520. https://doi.org/10.1134/S0016793220030081
  19. Kim V.P., Hegai V.V., Illich-Svitych P.V. On a possible ionospheric presage of earthquakes // Preprint № 29a (783). Moscow: IZMIRAN, 1988. 12 p.
  20. Kondo G. The variation of the atmosphere electric field at the time of earthquake // Memoirs of the Kakioka magnetic observatory. 1968. V. 13. № 1. P. 11—23.
  21. Kuo C.-L., Lee L.-C., Huba J.D. An improved coupling model for the lithosphere-atmosphere-ionosphere system // J. Geophys. Res. — Space. 2014. V. 119. № 4. P. 3189—3205. https://doi.org/10.1002/2013JA019392
  22. Kuo C.-L., Ho Y.-Y., Lee L.-C. Electrical coupling between the ionosphere and surface charges in the earthquake fault zone // Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies. Eds. D. Ouzounov, S. Pulinets, K. Hattori, P. Taylor. Geophysical Monograph Series. V. 234. Hoboken, USA: John Wiley & Sons, Inc, 2018. P. 99—124. https://doi.org/10.1002/9781119156949.ch7
  23. Kuo C.-L., Lee L.-C. Reply to comment by B.E. Prokhorov and O.V. Zolotov on “An improved coupling model for the lithosphere-atmosphere-ionosphere system” // J. Geophys. Res. Space. 2017. V. 122. № 4. P. 4869—4874. https://doi.org/10.1002/2016JA023579
  24. Markson R. The global circuit intensity: Its measurement and variation over the last 50 years // B. Am. Meteorol. Soc. 2007. V. 88. № 2. P. 223—242. https://doi.org/10.1175/bams-88-2-223
  25. Namgaladze A., Zolotov O., Karpov M., Romanovskaya Y. Manifestations of the earthquake preparations in the ionosphere total electron content variations // Natural Science. 2012. V. 4. № 11. P. 848—855. https://doi.org/10.4236/ns.2012.411113.
  26. Namgaladze A.A., Karpov M.I. Conduction current and extraneous electric current in the global electric circuit // Russ. J. Phys. Chem. B. 2015. V. 9. № 5. P. 754—757. https://doi.org/10.1134/S1990793115050231
  27. Prokhorov B.E., Zolotov O.V. Comments on “An improved coupling model for the lithosphere-atmosphere-ionosphere system” by Kuo et al. [2014] // J. Geophys. Res. Space. 2017. V. 122. № 4. P. 4865—4868. https://doi.org/10.1002/2016JA023441
  28. Prokhorov B.E., Zolotov O.V, Knyazeva M.A., Romanovskaya Yu.V. Simulated vertical electric field data: an estimation from an improved coupling model for the lithosphere-atmosphere-ionosphere system // Data In Brief. 2019. V. 26. ID104513. https://doi.org/10.1016/j.dib.2019.104513
  29. Pulinets S.A., Boyarchuk K.A. Ionospheric Precursors of Earthquakes. Berlin: Springer, 2004. 315 p. https://doi.org/10.1007/b137616
  30. Pulinets S., Ouzounov D. The Possibility of Earthquake Forecasting: Learning from nature. Bristol, UK: IOP Publishing Ltd, 2018. 167 p. https://doi.org/10.1088/978-0-7503-1248-6
  31. Vershinin E.F., Buzevich A.V., Yumoto K., Saita K., Tanaka Y. Correlations of seismic activity with electromagnetic emissions and variations in Kamchatka region // Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. Ed.M. Hayakawa. Tokyo: Terra Scientific Publishing Company, 1999. P. 513—517.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».