Forbush decreases and geomagnetic storms

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Forbush decreases in galactic cosmic rays (according to data from a network of neutron monitors) and accompanying geomagnetic disturbances over a long period from 1957 to 2022 have been identified and studied. Statistical relationships between various parameters of cosmic ray flux and geomagnetic activity indices are analyzed. It has been established that the magnitude of Forbush decreases depends nonlinearly on the class of geomagnetic storm. A moderate correlation is found between the extreme values of various geomagnetic activity indices (Ap, Kp, Dst) and the characteristics of cosmic rays. It is also shown that the simultaneous registration of extreme values of cosmic rays and geomagnetic activity parameters does not always occur but depends on the sign of the Bz-component of the interplanetary magnetic field in a particular event.

Texto integral

Acesso é fechado

Sobre autores

A. Belov

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: nshlyk@izmiran.ru
Rússia, Moscow, Troitsk

E. Belova

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: nshlyk@izmiran.ru
Rússia, Moscow, Troitsk

N. Shlyk

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Autor responsável pela correspondência
Email: nshlyk@izmiran.ru
Rússia, Moscow, Troitsk

M. Abunina

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: nshlyk@izmiran.ru
Rússia, Moscow, Troitsk

A. Abunin

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: nshlyk@izmiran.ru
Rússia, Moscow, Troitsk

S. Belov

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: nshlyk@izmiran.ru
Rússia, Moscow, Troitsk

Bibliografia

  1. Абунин А.А., Абунина М.А., Белов А.В., Ерошенко Е.А., Оленева В.А., Янке В.Г. Форбуш-эффекты с внезапным и постепенным началом // Геомагнетизм и аэрономия. Т. 52. № 3. С. 313–320. 2012.
  2. Белов А.В., Ерошенко Е.А., Оленева В.А., Струминский А.Б., Янке В.Г. Чем обусловлены и с чем связаны Форбуш-эффекты? // Изв. РАН. Сер. физ. Т. 65. № 3. С. 373–376. 2001.
  3. Белов А.В., Ерошенко Е.А., Янке Г.В., Оленева В.А., Абунина М.А., Абунин А.А. Метод глобальной съемки для мировой сети нейтронных мониторов // Геомагнетизм и аэрономия. Т. 58. № 3. С. 374–389. 2018. https://doi.org/10.7868/S0016794018030082
  4. Зверев А.С., Григорьев В.Г., Гололобов П.Ю., Стародубцев С.А. Мониторинг параметров анизотропии космических лучей в реальном времени и краткосрочный прогноз геомагнитных возмущений // Солнечно-земная физика. Т. 6. № 4. С. 42–45. 2020. https://doi.org/10.12737/szf-64202005
  5. Мелкумян А.А., Белов А.В., Шлык Н.С., Абунина М.А., Абунин А.А., Оленева В.А., Янке В.Г. Форбуш-понижения и геомагнитные возмущения: 1. События, связанные с разными типами солнечных и межпланетных источников // Геомагнетизм и aэрономия. Т. 63. № 6. С. 699–714. 2023. https://doi.org/10.31857/S0016794023600503
  6. Мелкумян А.А., Белов А.В., Шлык Н.С., Абунина М.А., Абунин А.А., Оленева В.А., Янке В.Г. Форбуш-понижения и геомагнитные возмущения: 2. Сравнение солнечных циклов 23–24 и событий с внезапным и постепенным началом // Геомагнетизм и аэрономия. Т. 64. № 1. С. 39–54. 2024. https://doi.org/10.31857/S0016794024010057
  7. Akasofu S.-I. Energy coupling between the solar wind and the magnetosphere // Space Sci. Rev. V. 28. № 2. P. 121–190. 1981. https://doi.org/10.1007/BF00218810
  8. Alhassan J.A., Okike O., Chukwude A.E. Testing the effect of solar wind parameters and geomagnetic storm indices on Galactic cosmic ray flux variation with automatically-selected Forbush decreases // Res. Astron. Astrophys. V. 21. № 9. ID 234. 2021. https://doi.org/10.1088/1674-4527/21/9/234
  9. Aslam O.P.M., Badruddin Study of the geoeffectiveness and galactic cosmic-ray response of VarSITI-ISEST campaign events in solar cycle 24 // Solar Phys. V. 292. № 9. ID 135. 2017. https://doi.org/10.1007/s11207-017-1160-x
  10. Baisultanova L.M., Belov A.V., Yanke V.G. Magnetospheric effect of cosmic rays within the different phases of magnetic storms / Proc. ICRC 24th, August 28 – September 8, 1995, Rome, Italy. V. 4. P. 1090–1093. 1995.
  11. Belov A.V., Eroshenko E.A., Oleneva V.A., Struminsky A.B., Yanke V.G. What determines the magnitude of Forbush decreases? // Adv. Space Res. V. 27. № 3. P. 625–630. 2001. https://doi.org/10.1016/S0273-1177(01)00095-3
  12. Belov A., Baisultanova L., Eroshenko E., Mavromichalaki H., Yanke V., Pchelkin V., Plainaki C., Mariatos G. Magnetospheric effects in cosmic rays during the unique magnetic storm on November 2003 // J. Geophys. Res. – Space. V. 110. № 9. ID A09S20. 2005. https://doi.org/10.1029/2005JA011067
  13. Belov A.V. Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena / Proc. IAU Symposium. V. 257. P. 439–450. 2009. https://doi.org/10.1017/S1743921309029676
  14. Cane H.V., Richardson I.G., von Rosenvinge T.T. Cosmic ray decreases: 1964–1994 // J. Geophys. Res. – Space. V. 101. № 10. P. 21561–21572. 1996. https://doi.org/10.1029/96JA01964
  15. Debrunner H., Flueckiger E., von Mandach H., Arens M. Determination of the ring current radii from cosmic ray neutron monitor data for the 17 December 1971 magnetic storm // Planet. Space Sci. V. 27. № 5. P. 577–581. 1979. https://doi.org/10.1016/0032-0633(79)90155-7
  16. Dorman L.I. Progress in Elementary Particle and Cosmic Ray Physics. Eds. J.G. Wilson and S.A. Wouthuysen. New York: Elsevier. 1963.
  17. Dorman L.I. Space weather and dangerous phenomena on the Earth: principles of great geomagnetic storms forеcasting by online cosmic ray data // Ann. Geophys. V. 23. № 9. P. 2997–3002. 2005. https://doi.org/10.5194/angeo-23-2997-2005
  18. Dvornikov V., Sdobnov V. Variation in the rigidity spectrum and anisotropy of cosmic rays at the period of Forbush effect on 12–15 July 1982 // Int. J. Geomag. Aeron. V. 3. № 3. P. 217–228. 2002.
  19. Dungey J.W. Interplanetary magnetic field and the auroral zones // Phys. Rev. Lett. V. 6. № 2. P. 47–48. 1961. https://doi.org/10.1103/PhysRevLett.6.47
  20. Forbush S.E. On world-wide changes in cosmic-ray intensity // Phys. Rev. V. 54. № 12. P. 975–988. 1937. https://doi.org/10.1103/PhysRev.54.975
  21. Forbush S.E. On cosmic-ray effects associated with magnetic storms // Terr. Mag. V. 43. № 3. P. 203–218. 1938. https://doi.org/10.1029/TE043i003p00203
  22. Forbush S.E. World-wide cosmic-ray variations, 1937–1952 // J. Geophys. Res. V. 59. № 4. P. 525–542. 1954. https://doi.org/10.1029/JZ059i004p00525
  23. Kane R. Severe geomagnetic storms and Forbush decreases: interplanetary relationships reexamined // Ann. Geophys. V. 28. № 2. P. 479–489. 2010. https://doi.org/10.5194/angeo-28-479-2010
  24. Kay C., Gopalswamy N. The effects of uncertainty in initial CME input parameters on deflection, rotation, Bz, and arrival time predictions // J. Geophys. Res. − Space. V. 123. № 9. P. 7220–7240. 2018. https://doi.org/10.1029/2018JA025780
  25. Kharayat H., Prasad L., Mathpal R., Garia S., Bhatt B. Study of cosmic ray intensity in relation to the interplanetary magnetic field and geomagnetic storms for Solar Cycle 23 // Solar Phys. V. 291. № 2. P. 603–611. 2016. https://doi.org/10.1007/s11207-016-0852-y
  26. Kubicka M., Möstl C., Amerstorfer T., Boakes P.D., Feng L., Eastwood J.P., Törmänen O. Prediction of geomagnetic storm strength from inner heliospheric in situ observations // Astrophys. J. V. 833. № 2. ID 255. 2016. https://doi.org/10.3847/1538-4357/833/2/255
  27. Kudela K., Storini M., Hofer M.Y., Belov A. Cosmic rays in relation to space weather // Space Sci. Rev. V. 93. № 1–2. P. 153–174. 2000. https://doi.org/10.1023/A:1026540327564
  28. Kudela K., Storini M. Cosmic ray variability and geomagnetic activity: A statistical study // J. Atmos. Sol.-Terr. Phy. V. 67. № 10. P. 907–912. 2005. https://doi.org/10.1016/j.jastp.2005.02.018
  29. Lingri D., Mavromichalaki H., Belov A., Eroshenko E., Yanke V., Abunin A., Abunina M. Solar activity parameters and associated Forbush Decreases during the minimum between Cycles 23 and 24 and the ascending phase of Cycle 24 // Solar Phys. V. 291. № 3. P. 1025–1041. 2016. https://doi.org/10.1007/s11207-016-0863-8
  30. Lockwood J.A. List of Forbush decreases 1954–1990 // Solar Geophys. Data. V. 549. P. 154–163. 1990.
  31. Mishra R.K., Silwal A., Baral R., Adhikari B., Braga C.R., Gautam S.P., Das P.K., Migoya-Orue Y. Wavelet analysis of Forbush Decreases at high-latitude stations during geomagnetic disturbances // Solar Phys. V. 297. № 2. ID 26. 2022. https://doi.org/10.1007/s11207-022-01948-z
  32. Munakata K., Bieber J.W., Yasue S., Kato C., Koyama M., Akahane S., Fujimoto K., Fujii Z., Humble J.E., Duldig M.L. Precursors of geomagnetic storms observed by the muon detector network // J. Geophys. Res. – Space. V. 105. № 12. P. 27457–27468. 2000. https://doi.org/10.1029/2000JA000064
  33. Papailiou M., Abunina M., Mavromichalaki H., Belov A., Abunin A., Eroshenko E., Yanke V. Precursory signs of large Forbush Decreases // Solar Phys. V. 296. № 6. ID 100. 2021. https://doi.org/10.1007/s11207-021-01844-y
  34. Parnahaj I., Kudela K., Kancirova M., Pastircak B. On cosmic ray decreases, geomagnetic storms and CMEs / Proc. 33rd ICRC, Rio de Janeiro, Brazil, 2–9 July 2013. P. 3583–3586. 2013.
  35. Parnahaj I., Kudela K. Forbush decreases at a middle latitude neutron monitor: relations to geomagnetic activity and to interplanetary plasma structures // Astrophys. Space Sci. V. 359. № 1. ID 35. 2015. https://doi.org/10.1007/s10509-015-2484-3
  36. Rostoker G., Fälthammar C.-G. Relationship between changes in the interplanetary magnetic field and variations in the magnetic field at the Earth’s surface // J. Geophys. Res. V. 72. № 23. P. 5853–5863. 1967. https://doi.org/10.1029/JZ072i023p05853
  37. Vennerstrom S., Lefevre L., Dumbović M., Crosby N., Malandraki O., Patsou I., Clette F., Veronig A., Vršnak B., Leer K., Moretto T. Extreme Geomagnetic Storms – 1868–2010 // Solar Phys. V. 291. № 5. P. 1447–1481. 2016. https://doi.org/10.1007/s11207-016-0897-y
  38. Ye Z.-H., Lu X.-T., Zong Q.-G. The variation of galactic cosmic ray intensity and the Kp category of magnetic disturbance / Proc. 20th ICRC. V. 4. P. 59–62. 1987.
  39. Ye Q., Wang C., He F., Xue B., Zhang X. The frequency-domain characterization of Cosmic Ray Intensity variations before Forbush decreases associated with geomagnetic storms // Space Weather. V. 20. № 3. ID e2021SW002863. 2022. https://doi.org/10.1029/2021SW002863
  40. Yoshida S., Akasofu S.-I. The development of the Forbush decrease and the geomagnetic storm fields // Planet. Space Sci. V. 14. № 10. P. 979–986. 1966. https://doi.org/10.1016/0032-0633(66)90134-6

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The relationship between the average values ​​of the CL parameters (AF, Aхуmax and Dmin) and the Kp-index of the GA.

Baixar (80KB)
3. Fig. 2. Percentage distribution of different values ​​of the Kr-index for 1957–2022.

Baixar (189KB)
4. Fig. 3. The event of July 26-28, 2004, in which a very strong GMB (Krmax = 9–) and a large FE (14.4%) were recorded.

Baixar (129KB)
5. Fig. 4. The event of March 18–22, 2006, in which a moderate GMB and a small-amplitude FE (0.7%) were recorded.

Baixar (127KB)
6. Fig. 5. The event of April 13–16, 2013, in which no GMB was registered, but a large FE was observed (4.4%).

Baixar (127KB)
7. Fig. 6. Relationship between record GMB and FE.

Baixar (99KB)
8. Fig. 7. Relationship between the minimum values ​​of the Dst index of the GA (Dstmin) and the amplitude of the FE (AF) with the parameter VmBm.

Baixar (234KB)
9. Fig. 8. The relationship between the average daily values ​​of the GA Dst index and the CR flux density (A0) with the Bz component of the IMF (diamonds show the values ​​averaged over equal intervals of change in Bz values).

Baixar (369KB)
10. Fig. 9. The relationship between the amplitude of the FE (AF) and the GA indices (Apmax, Dstmin) for the selected groups.

Baixar (428KB)
11. Fig. 10. The relationship between the value of the maximum hourly decrease in CR density (Dmin) and the GA indices (Apmax, Dstmin) for the selected groups.

Baixar (434KB)
12. Fig. 11. The relationship between the value of the equatorial component of the CR vector anisotropy (Axymax) and the GA indices (Apmax, Dstmin) for the selected groups.

Baixar (437KB)
13. Fig. 12. The relationship between the value of the north-south component of the CR vector anisotropy (Azrange) and the GA indices (Apmax, Dstmin) for the selected groups.

Baixar (476KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».