Parametrization of spatial-energy distributions of H+ and O+ ions of the ring current on the main phase of magnetic storms

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Based on the results of measurements near the equatorial plane a fluxes and energy spectra of H+ and O+ ions of the magnetosphere’s ring current by the OGO-3, Explorer 45, AMPTE/CCE, and Van Allen Probes (A and B) satellites, a systematic analysis of spatial distributions of the energy density for these ions on the main phase of magnetic storms was carried out. Twelve storms of different strength were considered, with max|Dst| from 64 to 307 nT. The radial profile of the ring current ions energy density is characterized by the maximum (Lm) and by the ratio of the energy densities of the ions and the magnetic field at this maximum (βm), and at L > Lm this profile is approximated by the function w(L) = w0exp(–L/L0). Quantitative dependences of the parameter Lm on the Dst index and MLT, and also the dependences of the parameters βm, w0 and L0 on the Dst, MLT and Lm, are obtained. These dependences are different for H+ and O+ ions, as well as for ions of low (E < 60 keV) and higher energies. It has been established that in a narrow inner region of the ring current near its maximum in the nighttime hemisphere of the magnetosphere, the ring current asymmetry is much smaller (especially for O+ ions) than at L > Lm. It was found that with increasing L, the asymmetry of the ring current by MLT increases significantly, with H+ ions concentrated at near 18 MLT, and O+ ions at near 24 MLT. It is shown that for O+ ions with E ~ 1–300 keV, βmLm–9; this result shows that a deeper penetration of hot plasma into a geomagnetic trap, during strong storms, requires not only a stronger electric field of convection, but also a significant preliminary accumulation and acceleration of ions (especially O+ ions) in the sources of the ring current.

Texto integral

Acesso é fechado

Sobre autores

A. Kovtyukh

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: kovtyukhas@mail.ru

Skobeltsyn Institute of Nuclear Physics

Rússia, Moscow

Bibliografia

  1. Ковтюх А.С. Радиальный профиль давления буревого кольцевого тока как функция Dst // Космические исследования. Т. 48. № 3. С. 218-238. 2010. (Kovtyukh A.S. Radial profile of pressure in a storm ring current as a function of Dst // Cosmic Res. V. 48. № 3. P. 211–231. 2010. https://doi.org/10.1134/S0010952510030032)
  2. Anderson R.R., Gurnett D.A. Plasma wave observations near the plasmapause with the S3-A satellite // J. Geophys. Res. V. 78. № 22. P. 4756-4764. 1973. https://doi.org/10.1029/JA078i022p04756
  3. Burke W.J., Maynard N.C., Hagan M.P., Wolf R.A., Wilson G.R., Gentile L.C., Gussenhoven M.S., Huang C.Y., Garner T.W., Rich F.J. Electrodynamics of the inner magnetosphere observed in the dusk sector by CRRES and DMSP during the magnetic storm of June 4–6, 1991 // J. Geophys. Res. – Space. V. 103. № 12. P. 29399–29418. 1998. https://doi.org/10.1029/98JA02197
  4. Burke W.J., Gentile L.C., Huang C.Y. Penetration electric fields driving main phase Dst, J. Geophys. Res. – Space. V. 112. № 7. ID A07208. 2007. https://doi.org/10.1029/2006JA012137
  5. Cahill L.J., Jr., Lee Y.C. Development of four magnetic storms in February 1972 // Planet. Space Sci. V. 23. № 9. P. 1279-1292. 1975. https://doi.org/10.1016/0032-0633(75)90151-8
  6. Daglis I.A., Thorne R.M., Baumjohann W., Orsini S. The terrestrial ring current: Origin, formation, and decay // Rev. Geophys. V. 37. № 4. P. 407–438. 1999. https://doi.org/10.1029/1999RG900009
  7. Ebihara Y., Ejiri M. Numerical simulation of the ring current: Review // Space Sci. Rev. V. 105. № 1–2. P. 377–452. 2003. https://doi.org/10.1023/A:1023905607888
  8. Frank L.A. On the extraterrestrial ring current during geomagnetic storms // J. Geophys. Res. V. 72. № 15. P. 3753–3767. 1967. https://doi.org/10.1029/JZ072i015p03753
  9. Fritz T.A., Smith P.H., Williams D.J., Hoffman R.A., Cahill L.J., Jr. Initial observations of magnetospheric boundaries by Explorer 45 (S3) / Correlated Interplanetary and Magnetospheric Observations. Ed. D.E. Page / Astrophys. Space Sci. L. V. 42. Dordrecht, Holland: D. Reidel Publishing Co., pp. 485-506. 1974. https://doi.org/10.1007/978-94-010-2172-2_31
  10. Fu S.Y., Zong Q.G., Fritz T.A., Pu Z.Y., Wilken B. Composition signatures in ion injections and its dependence on geomagnetic conditions // J. Geophys. Res. – Space. V. 107. № 10. ID 1299. 2002. https://doi.org/10.1029/2001JA002006
  11. Ganushkina N.Y., Pulkkinen T.I., Fritz T.A. Role of substorm-associated impulsive electric fields in the ring current development during storms // Ann. Geophys. V. 23. № 2. P. 579–591. 2005. https://doi.org/10.5194/angeo-23-579-2005
  12. Garner T.W., Wolf R.A., Spiro R.W., Burke W.J., Fejer B.G., Sazykin S., Roeder J.L., Hairston M.R. Magnetospheric electric fields and plasma sheet injection to low L-shells during the 4–5 June 1991 magnetic storm: Comparison between the Rice Convection Model and observations // J. Geophys. Res. – Space. V. 109. № 2. ID A02214. 2004. https://doi.org/10.1029/2003JA010208
  13. Gkioulidou M., Ohtani S., Mitchell D.G., Ukhorskiy A.Y., Reeves G.D., Turner D.L., Gjerloev J.W., Nosé M., Koga K., Rodriguez J.V., Lanzerotti L.J. Spatial structure and temporal evolution of energetic particle injections in the inner magnetosphere during the 14 July 2013 substorm event // J. Geophys. Res. – Space. V. 120. № 3. P. 1924–1938. 2015. https://doi.org/10.1002/2014JA020872
  14. Gloeckler G., Wilken B., Stüdeman, W., Ipavich F.M., Hovestadt D., Hamilton D.C., Kremser G. First composition measurement of the bulk of the storm-time ring current (1 to 300 keV/e) with AMPTE-CCE // Geophys. Res. Lett. V. 12. № 5. P. 325–328. 1985. https://doi.org/10.1029/GL012i005p00325
  15. Gloeckler G., Hamilton D.C. AMPTE ion composition results // Phys. Scripta. V. T18. P. 73–84. 1987. https://doi.org/10.1088/0031-8949/1987/T18/009
  16. Greenspan M.E., Hamilton D.C. A test of the Dessler-Parker-Sckopke relation during magnetic storms // J. Geophys. Res. – Space. V. 105. № 3. P. 5419–5430. 2000. https://doi.org/10.1029/1999JA000284
  17. Greenspan M.E., Hamilton D.C. Relative contributions of H+ and O+ to the ring current energy near magnetic storm maximum // J. Geophys. Res. – Space. V. 107. № 4. ID 1043. 2002. https://doi.org/10.1029/2001JA000155
  18. Hamilton D.C., Gloeckler G., Ipavich F.M., Stüdemann W., Wilken B., Kremser G. Ring current development during the great geomagnetic storm of February 1986 // J. Geophys. Res. – Space. V. 93. № 12. P. 14343–14355. 1988. https://doi.org/10.1029/JA093iA12P14343
  19. Jordanova V.K., Zaharia S., Welling D.T. Comparative study of ring current development using empirical, dipolar, and self-consistent magnetic field simulations // J. Geophys. Res. – Space. V. 115. № 12. ID A00J11. 2010. https://doi.org/10.1029/2010JA015671
  20. Keika K., Nosé M., Ohtani S., Takahashi K., Christon S.P., McEntire R.W. Outflow of energetic ions from the magnetosphere and its contribution to the decay of the storm time ring current // J. Geophys. Res. – Space. V. 110. № 1. ID A09210. 2005. https://doi.org/10.1029/2004JA010970
  21. Keika K., Seki K., Nosé M., Miyoshi Y., Lanzerotti L.J., Mitchell D.G., Gkioulidou M., Manweiler J.W. Three-step buildup of the 17 March 2015 storm ring current: Implication for the cause of the unexpected storm intensification // J. Geophys. Res. – Space. V. 123. № 1. P. 414–428. 2018. https://doi.org/10.1002/2017JA024462
  22. Kistler L.M., Mouikis C.G., Spence H.E. et al. The source of O+ in the storm time ring current // J. Geophys. Res. – Space. V. 121. № 6. P. 5333–5349. 2016. https://doi.org/10.1002/2015JA022204
  23. Korth A., Friedel R.H.W., Mouikis C.G., Fennell J.F., Wygant J.R., Korth H. Comprehensive particle and field observations of magnetic storms at different local times from the CRRES spacecraft // J. Geophys. Res. – Space. V. 105. № 8. P. 18729–18740. 2000. https://doi.org/10.1029/1999JA000430
  24. Kozyra J.U., Jordanova V.K., Borovsky J.E., Thomsen M.F., Knipp D.J., Evans D.S., McComas D.J., Cayton T.E. Effects of a high-density plasma sheet on ring current development during the November 2–6, 1993, magnetic storm // J. Geophys. Res. – Space. V. 103. № 11. P. 26285–26305. 1998. https://doi.org/10.1029/98JA01964
  25. Kozyra J.U., Liemohn M.W., Clauer C.R., Ridley A.J., Thomsen M.F., Borovsky J.E., Roeder J.L., Jordanova V.K., Gonzalez W.D. Multistep Dst development and ring current composition changes during the 4–6 June 1991 magnetic storm // J. Geophys. Res. – Space. V. 107. № 8. ID 1224. 2002. https://doi.org/10.1029/2001JA000023
  26. Krimigis S.M., Gloeckler G., McEntire R.M., Potemra T.A., Scarf F.L., Shelley E.G. Magnetic storm of September 4, 1984: A synthesis of ring current spectra and energy densities measured with AMPTE/CCE // Geophys. Res. Lett. V. 12. № 5. P. 329–332. 1985. https://doi.org/10.1029/GL012i005p00329
  27. Li H., Wang C., Kan J.R. Contribution of the partial ring current to the SYM-H index during magnetic storms // J. Geophys. Res. – Space. V. 116. № 11. ID A11222. 2011. https://doi.org/10.1029/2011JA016886
  28. Liemohn M.W., Kozyra J.U., Thomsen M.F., Roeder J.L., Lu G., Borovsky J.E., Cayton T.E. Dominant role of the asymmetric ring current in producing the stormtime Dst* // J. Geophys. Res. – Space. V. 106. № 6. P. 10883–10904. 2001. https://doi.org/10.1029/2000JA000326
  29. McEntire R.W., Lui A.T.Y., Krimigis S.M., Keath E.P. AMPTE/CCE energetic particle composition measurements during the September 4, 1984 magnetic storm // Geophys. Res. Lett. V. 12. № 5. P. 317-320. 1985. https://doi.org/10.1029/GL012i005p00317
  30. McIlwain C.E. Coordinate for mapping the distribution of magnetically trapped particles // J. Geophys. Res. V. 66. № 11. P. 3681-3691. 1961. https://doi.org/10.1029/JZ066p011p03681
  31. McPherron R.L., O’Brien T.P. Predicting geomagnetic activity: The Dst index / Space Weather. Eds. P. Song, H.J. Singer, G.L. Siscoe / Geoph. Monog. Series. V. 125. Washington, D. C.: AGU, pp. 339–345. 2001. https://doi.org/10.1029/GM125p0339
  32. Menz A.M., Kistler L.M., Mouikis C.G., Spence H.E., Skoug R.M., Funsten H.O., Larsen B.A., Mitchell D.G., Gkioulidou M. The role of convection in the buildup of the ring current pressure during the 17 March 2013 storm // J. Geophys. Res. – Space. V. 122. № 1. P. 475–492. 2017. https://doi.org/10.1002/2016JA023358
  33. Menz A.M., Kistler L.M., Mouikis C.G., Matsui H., Spence H.E., Thaller S.A., Wygant J.R. Efficacy of electric field models in reproducing observed ring current ion spectra during two geomagnetic storms // J. Geophys. Res. – Space. V. 124. № 11. P. 8974–8991. 2019a. https://doi.org/10.1029/2019JA026683
  34. Menz A.M., Kistler L.M., Mouikis C.G., Spence H.E., Henderson M.G. Effects of a realistic O+ source on modeling the ring current // J. Geophys. Res. – Space. V. 124. № 12. P. 9953–9962. 2019b. https://doi.org/10.1029/2019JA026859
  35. Mitchell D.G., Gkioulidou M., Ukhorskiy A.Y. Energetic ion injections inside geosynchronous orbit: Convection- and drift-dominated, charge-dependent adiabatic energization (W = qEd) // J. Geophys. Res. – Space. V. 123. № 8. P. 6360–6382. 2018. https://doi.org/10.1029/2018JA025556
  36. Nishimura Y., Shinbori A., Ono T., Iizima M., Kumamoto A. Storm-time electric field distribution in the inner magnetosphere // Geophys. Res. Lett. V. 33. № 22. ID L22102. 2006. https://doi.org/10.1029/2006GL027510
  37. Nishimura Y., Shinbori A., Ono T., Iizima M., Kumamoto A. Evolution of ring current and radiation belt particles under the influence of storm-time electric fields // J. Geophys. Res. – Space. V. 112. № 6. ID A06241. 2007. https://doi.org/10.1029/2006JA012177
  38. Potemra T.A., Zanetti L.J., Acuna M.H. AMPTE/CCE magnetic field studies of the September 4, 1984 storm // Geophys. Res. Lett. V. 12. № 5. P. 313–316. 1985. https://doi.org/10.1029/GL012i005p00313
  39. Roederer J.G. Dynamics of Geomagnetically Trapped Radiation. New York, Heidelberg, Berlin: Springer, 166 p. 1970. https://doi.org/10.1007/978-3-642-49300-3
  40. Roederer J.G., Lejosne S. Coordinates for representing radiation belt particle flux // J. Geophys. Res. – Space. V. 123. № 2. P. 1381–1387. 2018. https://doi.org/10.1002/2017JA025053
  41. Siscoe G.L., McPherron R.L., Jordanova V.K. Diminished contribution of ram pressure to Dst during magnetic storms // J. Geophys. Res. – Space. V. 110. № 12. ID A12227. 2005. https://doi.org/10.1029/2005JA011120
  42. Smith P.H., Hoffman R.A. Ring current particle distributions during the magnetic storms of December 16-18, 1971 // J. Geophys. Res. V. 78. № 22. P. 4731-4737. 1973. https://doi.org/10.1029/JA078i022p04731
  43. Stüdemann W., Gloeckler G., Wilken B., Ipavich F.M., Kremser G., Hamilton, D.C., Hovestadt D. Ion composition of the bulk ring current during a magnetic storm: Observations with the CHEM-Instrument on AMPTE/CCE / Solar Wind - Magnetosphere Coupling. Eds. Y. Kamide, J.A. Slavin. Tokyo: Terra Sci., pp. 697–705. 1986.
  44. Thaller S.A., Wygant J.R., Dai L. et al. Van Allen Probes investigation of the large-scale duskward electric field and its role in ring current formation and plasmasphere erosion in the 1 June 2013 storm // J. Geophys. Res. – Space. V. 120. № 6. P. 4531–4543. 2015. https://doi.org/10.1002/2014JA020875
  45. Wang W., Yang J., Nishimura Y. et al. Magnetospheric source and electric current system associated with intense SAIDs // Geophys. Res. Lett. V. 48. № 22. ID e2021GL093253. 2021. https://doi.org/10.1029/2021GL093253
  46. Wygant J., Rowland D., Singer H.J., Temerin M., Mozer F., Hudson M.K. Experimental evidence on the role of the large spatial scale electric field in creating the ring current // J. Geophys. Res. – Space. V. 103. № 12. P. 29527–29544. 1998. https://doi.org/10.1029/98JA01436
  47. Yang J., Toffoletto F.R., Wolf R.A. Comparison study of ring current simulations with and without bubble injections // J. Geophys. Res. – Space. V. 121. № 1. P. 374–379. 2016. https://doi.org/10.1002/2015JA021901
  48. Yang Y.Y., Shen C., Dunlop M., Rong Z.J., Li X., Angelopoulos V., Chen Z.Q., Yan G.Q., Ji Y. Storm time current distribution in the inner equatorial magnetosphere: THEMIS observations // J. Geophys. Res. – Space. V. 121. № 6. P. 5250–5259. 2016. https://doi.org/10.1002/2015JA022145
  49. Yue C., Bortnik J., Li W. et al. The composition of plasma inside geostationary orbit based on Van Allen Probes observations // J. Geophys. Res. – Space. V. 123. № 8. P. 6478–6493. 2018. https://doi.org/10.1029/2018JA025344
  50. Yue C., Bortnik J., Li W. et al. Oxygen ion dynamics in the Earth's ring current: Van Allen Probes observations // J. Geophys. Res. – Space. V. 124. № 10. P. 7786–7798. 2019. https://doi.org/10.1029/2019JA026801
  51. Zeng X.Y., Ma S.Y., Xu L., Valek P., Wang H., Xiong C., Cai H.T. Global 3-D distributions of O+ and H+ ions in the inner magnetosphere reconstructed by voxel tomography from TWINS ENA images during a large magnetic storm // J. Geophys. Res. – Space. V. 128. № 7. ID e2023JA031442. 2023. https://doi.org/10.1029/2023JA031442
  52. Zhao H., Li X., Baker D.N. et al. The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements // J. Geophys. Res. – Space. V. 120. № 9. P. 7493–7511. 2015. https://doi.org/10.1002/2015JA021533

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Position of the maximum energy density of CT ions (Lm) in the main phase of different storms depending on |Dst| (a) and MLT (b).

Baixar (185KB)
3. Fig. 2. Ratios of the ion energy density at the CT maximum to the local magnetic field pressure (βm) as a function of |Dst| (a), MLT (b), and Lm (c). Thin lines are root-mean-square power-law approximations of these data.

Baixar (120KB)
4. Fig. 3. Radial profiles of the energy density (w) of H++O+ ions with E ~ 1–300 keV (thin lines) and with E ~ 1–60 keV (dashed lines) for the outer part of the RC during the main phase of various storms.

Baixar (177KB)
5. Fig. 4. Distributions of the parameter w0 of the outer edge of the CT depending on |Dst| (a), MLT (b) and Lm (c). These results relate to the energy density of H++O+ ions and were obtained at the end of the main phase of the storms (except for point 8). The thin lines show the root-mean-square power approximations of these distributions for ions of low (dashed line) and high energies.

Baixar (140KB)
6. Fig. 5. Distributions of the L0 parameter of the outer part of the CT depending on |Dst| (a), MLT (b), and Lm (c). These results relate to the energy density of H++O+ ions with E ~ 1–300 keV and were obtained at the end of the main phase of the storms. The thin lines show the root-mean-square approximations of these distributions.

Baixar (135KB)
7. Fig. 6. Distributions of the parameters w0 and L0 by MLT, constructed separately for H+ and O+ ions.

Baixar (138KB)
8. Fig. 7. Comparison of expressions (4) and (5) obtained for a simple model of CT ion convection (see text).

Baixar (70KB)
9. Fig. 8. Changes in the average values ​​of energy density 〈wH+〉 and 〈wO+〉 (left side of the figure) and the ratio 〈wO+〉/〈wH+〉 (right side of the figure) with an increase in MLT from 18 to 24 h. The beginning of each vector corresponds to 18 MLT, and its end (arrow) to 24 MLT. Thick, thin and dotted vectors correspond to L = 4, 5 and 6.

Baixar (60KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».