Interpretation of 2D magnetic anomalies using wavelet transform

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Determination of the boundaries of anomaly-forming bodies (deep sources) is an important step in interpreting potential field anomalies during geophysical research. In this paper, a method based on continuous wavelet analysis of magnetic profiles is proposed to solve this problem. The connection between the parameters of simple bodies and the properties of the wavelet transformation of the field created by these bodies is shown. A technique has been developed for determining the boundaries of blocks of the magnetically active layer. The proposed method was tested on model data of the simplest single bodies and on a spreading model. The high resolution of the method is shown, which makes it possible to determine the boundaries of blocks of the spreading model with an accuracy of up to 400 m. The method was applied to a real magnetic profile crossing a typical oceanic structure: the mid-ocean Reykjanes Ridge. The results obtained confirm that the proposed method has a higher resolution compared to the analytical signal and allows the identification of narrow blocks. To clarify the boundaries of these blocks, it is planned to develop a methodology based on the modeling results.

全文:

受限制的访问

作者简介

S. Merkuriev

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sam_hg@hotmail.com

St. Petersburg Branch

俄罗斯联邦, St. Petersburg

S. Ivanov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences

Email: sergei.a.ivanov@mail.ru

St. Petersburg Branch

俄罗斯联邦, St. Petersburg

I. Demina

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences

Email: dim@izmiran.spb.ru

St. Petersburg Branch

俄罗斯联邦, St. Petersburg

参考

  1. Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения // УФН. Т. 166. № 11. С. 1145–1170. 1996.
  2. Воскобойников Ю.Е. Вейвлет-фильтрация сигналов и изображений (с примерами в пакете MathCAD). Новосиб. гос. архитектур.-строит. ун-т (Сибстрин). Новосибирск: НГАСУ (Сибстрин). 188 с. 2015.
  3. Захаров В.П., Логачев А.А. Магниторазведка. Изд.2. Л.: Недра. 351 с. 1979.
  4. Иванов В.В., Ротанова Н.М., Ковалевская Е.В., Цветков Ю.П. Использование результатов вейвлет-анализа для оценки глубин магнитных источников // Геомагнетизм и аэрономия. Т. 42. № 4. С. 569–576. 2002.
  5. Иванов С.А., Меркурьев С.А. Интерпретация морских магнитных аномалий. Часть 1. Обзор существующих методов и анализ метода аналитический сигнал // Геомагнетизм и аэрономия. Т. 54. № 3. С. 420–428. 2014, https://doi.org/10.7868/S0016794014030080
  6. Иванов С.А., Меркурьев С.А. Возможности палеомагнитного и геоисторического анализа короткопериодных морских магнитных аномалий типа “tiny wiggles” // Геомагнетизм и аэрономия. Т. 56. № 3. С. 393–406. 2016. https://doi.org/10.7868/S0016794016030081
  7. Глазнев В.Н. Комплексные геофизические модели литосферы Фенноскандии. // Апатиты. “КаэМ”. 252 с. 2003.
  8. Глазнев В.Н., Муравина О.М. Использование вейвлет-преобразований для анализа и интерпретации потенциальных полей / Вопросы теории и практики геологической интерпретации геофизических полей. Материалы 47-й сессии Международного научного семинара Д.Г. Успенского - В.Н. Страхова. Воронеж: ИПЦ “Научная книга” 2020. С. 89–93.
  9. Кузнецов К.М., Булычев А.А. Вейвлеты Пуассона в задачах обработки площадных потенциальных полей // Вестн. КРАУНЦ. Сер.: Науки о Земле. Вып. 36. № 4. С. 72–78. 2017.
  10. Кузнецов К.М., Оболенский И.В., Булычев А.А. Трансформации потенциальных полей на основе непрерывного вейвлет-преобразования // Вестн. МГУ. Сер. 4. Геология. № 6. С. 61–70. 2015.
  11. Никитский В.Е., Глебовский Ю.С. Магниторазведка. Изд.2. М.: Недра. 470 с. 1990.
  12. Оболенский И.В., Булычев А.А. Применение комплексного непрерывного вейвлет-преобразования Пуассона для определения источников аномалий потенциальных полей // Геофизич. исслед. Т. 12. № 3. С. 5–21. 2011.
  13. Трошков Г.А., Шалаев C.B. Применение преобразования Фурье для решения обратной задачи гравиразведки и магниторазведки // Прикладная геофизика. Вып. 30. С. 162–178. 1961.
  14. Хвастунов М.С. Вейвлет-анализ: применение к сигналам гауссовой формы. // JINR Rapid Comm. Т. 92. № 6. С. 63–74. 1998.
  15. Catalán M., Martos Y.M., Galindo-Zaldivar J., Perez L.F. and Bohoyo F. Unveiling Powell Basin’s. Tectonic Domains and Understanding Its Abnormal Magnetic Anomaly Signature. Is Heat the Key? // Front. Earth Sci. V. 8:580675. 2020. https://doi.org/10.3389/feart.2020.580675580675
  16. Chaubey A.K., Dyment J., Bhattacharya G.C., Royer J.Y., Srinivas K., Yatheesh V. Paleogene magnetic isochrons and palaeo-propagators in the Arabian and Eastern Somali basins, NW Indian Ocean. In: The Tectonic and Climatic Evolution of the Arabian Sea Region. Clift P.D., Croon D., Gaedicke C., Craig J. (Eds.). Geological Society. London. Special Publication. V. 195. P. 71–85. 2002.
  17. Cooper G.R.J, Cowan D.R. Enhancing potential field data using filters based on the local phase. // Computers & Geoscience. V. 32. P. 1585–1591. 2006. https://doi.org/10.1016/j.cageo.2006.02.016
  18. Cooper G.R.J, Cowan D.R. A Generalized Derivative Operator for Potential Field Data // Geophysical Prospecting. V. 59. № 1. P. 188–194. 2011. https://doi.org/10.1111/j.1365-2478.2010.00901.x
  19. DeMets C. and Merkouriev S. Eurasia-North America Chrons 1-6 plate reconstruction data: Arctic and north Atlantic basins. // MGDS. 2020. https://doi.org/10.1111/j.1365-246X.2008.03761.x
  20. Ferreira F.J.F., de Souza1 J., de B. e S. Bongiolo A., and de Castro L.G. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle // Geophysics. V. 78. № 3. J33–J41. 2013. https://doi.org/10.1190/geo2011-0441.1
  21. Gay S.P. Standard curves for the interpretation of magnetic anomalies over long tabular bodies // Geophysics. V. 28. P. 161–200. 1963. https://doi.org/10.1111/j.1365-2478.2010.00901.x
  22. Gradstein F.M., Ogg J.G., Schmitz M.B., Ogg G.M. Geologic Time Scale 2020. V. 2. Amsterdam. Oxford. Cambridge: Elsevier. 1357 p. 2020.
  23. Gunn P.J. A Quantitative methods for interpreting aeromagnetic data: a subjective review. // Journal of Australian Geology and Geophysics. V. 17. № 2. P. 105–113. 1997.
  24. Hey R. Magnetometer (Geometrics G-882) data as collected during the cruise MGL1309, North Atlantic Seafloor Spreading Geometry Reorganization. // Rolling Deck to Repository (R2R). 2013. https://doi.org/10.7284/112257
  25. Issachar R., Ebbing J. and Dilixiati Y. New magnetic anomaly map for the Red Sea reveals transtensional structures associated with rotational rifting. // Scientific Report. V. 12. Article number 5757. 2022. https://doi.org/10.1038/s41598-022-09770-0
  26. Kumar P., Foufoula-Georgiou E. Wavelet analysis for geophysical applications // Reviews of Geophysics. V. 35. № 4. P. 385–412. 1997. https://doi.org/10.1029/97RG00427
  27. MacLeod I.N., Jones K. and Dai T.F. 3-D Analytic Signal in the Interpretation of Total Magnetic Field Data at Low Magnetic Latitudes. // Exploration Geophysics. V. 24. P. 679–688. 1993. https://doi.org/10.1071/EG993679
  28. Miller H.G. and Singh V. Potential field tilt a new concept for location of potential field sources. // J. Appl. Geophys. V. 32. P. 213–217. 1994. https://doi.org/10.1016/0926-9851(94)90022-1
  29. Merkouriev S. and DeMets C. A high‐resolution model for Eurasia–North America plate kinematics since 20 Ma, // Geophys. J. Int. V. 173. P. 1064–1083. 2008. https://doi.org/10.1111/j.1365-246X.2008.03761.x
  30. Moreau F., Gibert D., Holschneider M., Saracco G. Wavelet analysis of potential fields. // Inverse Problems. V. 13. № 1. P. 165–178. 1997.
  31. Nabighian M.N. The analytical signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation // Geophysics. V. 37. № 3. P. 507–517. 1972.
  32. Nabighian M.N. Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal cross-section // Geophysics. V. 39. № 1. P. 85–92. 1974.
  33. Nabighian M.N., Grauch V.J.S., Hansen R.O., Lafehr T.R., Li Y., Peirce J.W., Phillips J.D., Ruder M.E. The historical development of the magnetic method in exploration // Geophysics. V. 70. № 6. P. 33–61. 2005.
  34. Parnell-Turner R., Schouten H. and Smith D.K. Tectonic Structure of the Mid-Atlantic Ridge near 16◦30’N // Geochemistry, Geophysics, Geosystems. V. 17. Is. 10. P. 39934010. 2016. https://doi.org/10.1002/2016GC006514
  35. Reid A.B., Allsop J.M., Granser H., Millet A.J., and Somerton I.W. Magnetic interpretation in three dimensions using Euler deconvolution. // Geophysics. V. 55. P. 180–191. 1990. https://doi.org/10.1190/1.1442774
  36. Roest W.R., Verhoef J., and Pilkington M. Magnetic interpretation using the 3-D analytic signal. // Geophysics. V. 57. P. 116–125 1992.
  37. Saihac P., Galdeano A., Gibert D., Moreau F., Delor C. Identification of sources of potential fields with the continuous wavelet transform: Complex wavelets and application to aeromagnetic profiles in French Guiana. // JGR Solid Earth. V. 105. Is. B8. P. 19455–19475. 2000. https://doi.org/10.1029/2000JB900090
  38. Salem A., Ravat D., Gamey T.J., and Ushijima K. Analytic signal approach and its applicability in environmental magnetic investigations. // J. Appl. Geophys. V. 49. P. 231–244. 2002. https://doi.org/10.1016/S0926-9851(02)00125-8
  39. Schouten H., McCamy K. Filtering marine magnetic anomalies // J. Geophys. Res. V. 77. P. 7089–7099. 1972.
  40. Spector A. and Grant F.S. Statistical models for interpreting aeromagnetic data. // Geophysics. V. 35. P. 293–302. 1970.
  41. Talwani M. and Heirtzler J. Computation of magnetic anomalies caused by two dimensional bodies of arbitrary shape / Computers in Mineral Industries, Parks, G.A. Ed. Stanford Univ. Publ. Geol. Sci. V. 9. P. 464–480. 1964.
  42. Thompson D.T. EULDPH: a new technique for making depth estimates from magnetic data computer-assisted. // Geophysics. V. 47. P. 31–37. 1982.
  43. Verduzco B., Fairhead J.D., Green C.M., and Mackenzie C. New insights into magnetic derivatives for structural mapping // Leading Edge. V. 23. P. 116–119. 2004. https://doi.org/10.1190/1.1651454
  44. Wijns C., Pere C. and Kowalczyk P. Theta map: edge detection in magnetic data. // Geophysics. V. 70. P. L39–L43. 2005.
  45. Werner. S. Interpretation of magnetic anomalies at sheet_like bodies // Norstedt. Sveriges Geolologiska Undersok. Ser. C. 1953.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Geometry and parameters of 2D geophysical models. (a) - quadrant, vertically and horizontally semi-infinite body; (b) - layer, horizontally semi-infinite layer; (c) - dike; (d) - block.

下载 (70KB)
3. Fig. 2. Wavelet spectra of the quadrant field for three Gaussian functions. (a) - m = 1, (b) - m = 2 and (c) - m = 3, respectively. Continuous lines are isolines of wavelet spectrum coefficients, dots are positions of local maxima at fixed scale.

下载 (166KB)
4. Fig. 3. Errors of determining the depth and thickness of the reservoir by the 3rd derivative. (a) - depth determination error, symbols show the dependence on thickness h in km: h = 0. 5 - ●, h = 1 - ◆, h = 2 - ▲, h = 3 - ”, h = 4 - □, h = 6 - ○, h = 7 - △, h = 8 - □; (b) - thickness determination error, symbols show dependence on z1 in km: z1 = 1 - ●, z1 = 2 - ▲, z1 = 4 -◆; (c) - relative thickness determination error in dimensionless units.

下载 (112KB)
5. Fig. 4. Error in determining the depth and half-width of the dike from the extrema of the 3rd derivative. (a) - error of z1 determination; (b) - error of half-width determination; (c) - the same as (a) after correction; (d) - the same as (b) after correction; symbols on (a) and (c) correspond to different half-widths, on (b) and (d) - dike depths.

下载 (189KB)
6. Fig. 5.Comparison of interpretation capabilities of the wavelet method and the analytical signal method.The solid line shows the theoretical dependence for the wavelet method, the dotted line - for the analytical signal, triangles - values obtained by the extrema of the 1st derivative, circles - the same by the extrema of the 3rd derivative.

下载 (70KB)
7. Fig. 6.The field created by the structure of 3 blocks, its derivatives and the result of interpretation.Bold black line shows the field, long dashed line - 1st derivative, short dashed line - 2nd derivative, solid gray line - 3rd derivative; (a) - given structure, (b) - initial estimation, (c) - after correction.

下载 (209KB)
8. Fig. 7.Comparison of two methods for determining the anomaly source boundaries for the spreading model.(a) -magnetic anomalies calculated from the spreading model, dark rectangles show the blocks of direct polarity, alphanumeric symbols - chron boundaries; (b) - analytical signal; (c) - comparison of the position of chron boundaries: segments with ▲ are the sought boundaries of the bodies, segments with ▼ are those found by wavelet analysis, segments with ◆ are those found by analytical signal; (d) - wavelet transform, isolines show the modulus of wavelet coefficients, dashed line - local extrema.

下载 (480KB)
9. Fig. 8.Magnetometer profile crossing the Reykjanes Ridge in the North Atlantic. (a) - bottom relief; (b) - magnetic anomalies measured on the KNOR24 profile, symbols - chrons; numbers - numbers of the main anomalies; (c) - shadow map of the bottom relief with the positions of isochrons and observed magnetic anomalies on the KNOR24 magnetometer profile, symbols are the same as in (b).

下载 (507KB)
10. Fig. 9. Comparison of two methods of determining the boundaries of magnetic anomaly sources for the KNOR24 profile. (a) - magnetic anomalies observed on the profile, dark rectangles show blocks of direct polarity, alphanumeric symbols - chron boundaries; (b) - analytical signal; (c) - comparison of the chron boundary positions; (d) - wavelet transformation.

下载 (428KB)

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».