Plasma Mechanism of Radio Emission Generation on a Shock Wave in the Vicinity of an Exoplanet

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study evaluates the possibility of efficient radio emission generation in the bow shock region of hot Jupiter–type exoplanets. As a source of energetic electrons, the shock drift acceleration mechanism at a quasi-perpendicular shock is proposed. Electrons reflected and accelerated by the shock propagate through the relatively dense stellar wind plasma and excite plasma waves; therefore, a plasma emission mechanism is considered as the source of the resulting radio waves. Using the bow shock of the hot Jupiter HD~189733b as a case study, the properties of the energetic electron beam, the excited plasma waves, and the resulting radio frequencies are estimated. An energy-based analysis is carried out to identify the range of stellar wind parameters for which radio emission from the bow shock of the exoplanet HD~189733b could be detectable by modern astronomical instruments.

About the authors

A. A. Kuznetsov

Gaponov-Grekhov Institute of Applied Physics RAS

Email: kuznetsov.alexey@ipfran.ru
Nizhny Novgorod, Russia

V. V. Zaitsev

Gaponov-Grekhov Institute of Applied Physics RAS

Nizhny Novgorod, Russia

References

  1. Михайловский А.Б. Теория плазменных неустойчивостей. М.: Атомиздат, 1971. 276 с.
  2. Ball L., Melrose D.B. Shock Drift Acceleration of Electrons // Publications of the Astronomical Society of Australia. V. 18. P. 361–373. 2001. https://doi.org/10.1071/as01047.
  3. Bourrier V., Lecavelier des Etangs A. 3D model of hydrogen atmospheric escape from HD209458b and HD189733b: radiative blow-out and stellar wind interactions // Astronomy & Astrophysics. V. 557. P. A124. 2013. https://doi.org/10.1051/0004-6361/201321551.
  4. Bret A., Firpo M.-C., Deutsch C. Collective electromagnetic modes for beam-plasma interaction in the whole // Physical Review E. V. 70. P. 046401. 2004. https://doi.org/10.1103/physreve.70.046401.
  5. De Hoffmann F., Teller E. Magneto-Hydrodynamic Shocks // Physical Review. V. 80. P. 692–703. 1950. https://doi.org/10.1103/physrev.80.692.
  6. Dudik J. et al. Nonequilibrium Processes in the Solar Corona, Transition Region, Flares, and Solar Wind (Invited Review) // Solar Physics. V. 292. P. 100. 2017. https://doi.org/10.1007/s11207-017-1125-0.
  7. Echim M.M., Lemaire J., Lie-Svendsen Ø. A Review on Solar Wind Modeling: Kinetic and Fluid Aspects // Surveys in Geophysics. V. 32. P. 1–70. 2010. https://doi.org/10.1007/s10712-010-9106-y.
  8. Fares R. et al. MOVES – I. The evolving magnetic field of the planet-hosting star HD189733 // Monthly Notices of the Royal Astronomical Society. V. 471. P. 1246–1257. 2017. https://doi.org/10.1093/mnras/stx1581.
  9. Ginzburg V.L. The propagation of electromagnetic waves in plasmas. 1970.
  10. Goodrich C.C., Scudder J.D. The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves // Journal of Geophysical Research: Space Physics. V. 89. P. 6654–6662. 1984. https://doi.org/10.1029/ja089ia08p06654.
  11. Grießmeier J., Zarka P., Girard J.N. Observation of planetary radio emissions using large arrays // Radio Science. V. 46. P. RS0F09. 2011. https://doi.org/10.1029/2011RS004752.
  12. Holman G.D., Pesses M.E. Solar type II radio emission and the shock drift acceleration of electrons // The Astrophysical Journal. V. 267. P. 837. 1983. https://doi.org/10.1086/160918.
  13. Kavanagh R.D. et al. MOVES — II. Tuning in to the radio environment of HD189733b // Monthly Notices of the Royal Astronomical Society. V. 485. P. 4529–4538. 2019. https://doi.org/10.1093/mnras/stz655.
  14. Kichigin G.N. Properties of surfatron acceleration of electrons // JETP. V. 81. No. 4. P. 736–744. 1995.
  15. Kuznetsov A.A. et al. Saturating Magnetic Field of Weibel Instability in Plasmas with Bi-Maxwellian and Bikappa Particle Distributions // Plasma Phys. Rep. Vol. 48. Pp. 973–982. 2022. https://doi.org/10.1134/s1063780x22600700.
  16. Kuznetsov A.A. et al. Quasilinear Simulation of the Development of Weibel Turbulence in Anisotropic Collisionless Plasma // Journal of Experimental and Theoretical Physics. V. 137. P. 966–985. 2023. https://doi.org/10.1134/s1063776123120099.
  17. Liu Z., Wang L., Guo X. Acceleration of Solar Wind Suprathermal Electrons at the Earth’s Bow Shock // The Astrophysical Journal. V. 935. P. 39. 2022. https://doi.org/10.3847/1538-4357/ac8157.
  18. Llama J. et al. The Shocking Variability of Exoplanet Transits // Proceedings of the International Astronomical Union. V. 8. P. 262–265. 2013. https://doi.org/10.1017/s1743921313008521.
  19. Louis C.K. et al. ExPRES: an Exoplanetary and Planetary Radio Emissions Simulator // Astronomy & Astrophysics. V. 627. P. A30. 2019. https://doi.org/10.1051/0004-6361/201935161.
  20. Mann G., Klassen A. Electron beams generated by shock waves in the solar corona // Astronomy & Astrophysics. V. 441. Pp. 319–326. 2005. https://doi.org/10.1051/0004-6361:20034396.
  21. Mann G. et al. Radio signatures of shock-accelerated electron beams in the solar corona // Astronomy & Astrophysics. V. 609. P. A41. 2018. https://doi.org/10.1051/0004-6361/201730546.
  22. Melrose D.B., Hewitt R.G., Dulk G.A. Electron-cyclotron maser emission: Relative growth and damping rates for different modes and harmonics // Journal of Geophysical Research: Space Physics. V. 89. P. 897–904. 1984. https://doi.org/10.1029/ja089ia02p00897.
  23. Odert P. et al. Modeling the Lyα transit absorption of the hot Jupiter HD 189733b // Astronomy & Astrophysics. V. 638. P. A49. 2020. https://doi.org/10.1051/0004-6361/201834814.
  24. Priest E.R. Solar Magnetohydrodynamics. Springer Netherlands, 1982. ISBN 9789400979581. https://doi.org/10.1007/978-94-009-7958-1.
  25. Rumenskikh M.S. et al. Global 3D Simulation of the Upper Atmosphere of HD189733b and Absorption in Metastable He i and Lyα Lines // The Astrophysical Journal. V. 927. P. 238. 2022. https://doi.org/10.3847/1538-4357/ac441d.
  26. Shi C. et al. Proton and Electron Temperatures in the Solar Wind and Their Correlations with the Solar Wind Speed // The Astrophysical Journal. V. 944. P. 82. 2023. https://doi.org/10.3847/1538-4357/acb341.
  27. Stepanov A.V. et al. Second-Harmonic Plasma Radiation of Magnetically Trapped Electrons in Stellar Coronae // The Astrophysical Journal. V. 524. № 2. P. 961–973. 1999. https://doi.org/10.1086/307835
  28. Strugarek A. et al. MOVES — V. Modelling star–planet magnetic interactions of HD 189733 // Monthly Notices of the Royal Astronomical Society. V. 512. P. 4556–4572. 2022. https://doi.org/10.1093/mnras/stac778.
  29. Treumann R.A., Baumjohann W. Advanced Space Plasma Physics. Published by imperial college press, distributed by world scientific publishing co., 1997. ISBN 9781860943072. https://doi.org/10.1142/p020.
  30. Tsytovich V.N. Theory of turbulent plasma. 1977.
  31. Vidotto A.A., Jardine M., Helling C. Early uv ingress in wasp-12b: measuring planetary magnetic fields // The Astrophysical Journal. 2010. Vol. 722. Pp. L168–L172. https://doi.org/10.1088/2041-8205/722/2/L168.
  32. Weibel E.S. Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution // Phys. Rev. Lett. 1959. Vol. 2. Pp. 83–84. https://doi.org/10.1103/physrevlett.2.83.
  33. Wu C.S. A fast Fermi process: Energetic electrons accelerated by a nearly perpendicular bow shock // Journal of Geophysical Research: Space Physics. 1984. Vol. 89. Pp. 8857–8862. https://doi.org/10.1029/ja089ia10p08857.
  34. Wu C.S., Lee L.C. A theory of the terrestrial kilometric radiation // The Astrophysical Journal. 1979. Vol. 230. Pp. 621. https://doi.org/10.1086/157120.
  35. Yang L. et al. Dynamic acceleration of energetic protons by an interplanetary collisionless shock // Astronomy & Astrophysics. 2024. Vol. 686. Pp. A132. https://doi.org/10.1051/0004-6361/202348723.
  36. Zaitsev V.V. et al. Fast electrons in the plasmosphere of the exoplanet HD189733b // Geomagnetism and Aeronomy. 2024. Vol. 64. (In press).
  37. Zaitsev V.V. et al. On the Efficiency of Radio Emissions at the Double Plasma Frequency in the Magnetosphere of Exoplanet HD189733b // Geomagnetism and Aeronomy. 2023. Vol. 63. Pp. 892–898. https://doi.org/10.1134/s0016793223070307.
  38. Zaitsev V.V., Shaposhnikov V.E. Plasma maser in the plasmasphere of HD189733b // Monthly Notices of the Royal Astronomical Society. 2022. Vol. 513. Pp. 4082–4089. https://doi.org/10.1093/mnras/stac1140.
  39. Zaitsev V., Stepanov A. The plasma radiation of flare kernels // Solar Physics. 1983. Vol. 88. Pp. 1–2. https://doi.org/10.1007/bf00196194.
  40. Zheleznyakov V.V. Radiation in Astrophysical Plasmas. Springer Netherlands, 1996. ISBN 9789400902015. https://doi.org/10.1007/978-94-009-0201-5.
  41. Zhilkin A.G., Bisikalo D.V. On Possible Types of Magnetospheres of Hot Jupiters // Astronomy Reports. 2019. Vol. 63. Pp. 550–564. https://doi.org/10.1134/s1063772919070096.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).