Cosmic ray intensity forecast for the current century
- Authors: Kobelev P.G.1, Trefilova L.А.1, Belov А.V.1, Gushchina R.Т.1, Yanke V.G.1
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences
- Issue: Vol 65, No 2 (2025)
- Pages: 168-178
- Section: Articles
- URL: https://journal-vniispk.ru/0016-7940/article/view/292388
- DOI: https://doi.org/10.31857/S0016794025020032
- EDN: https://elibrary.ru/CWRVER
- ID: 292388
Cite item
Abstract
To diagnose and forecast the state of the heliosphere, as well as space weather and climate, it is necessary to know the temporal changes of galactic cosmic rays flux at the Earth’s orbit. The aim of the work is to forecast the cosmic ray flux for the next century based on the relationship between the modulation of galactic cosmic rays and the characteristics of solar activity. For a long-term forecast, one parameter models of solar activity were used that determines the modulation of galactic cosmic rays – the number of sunspots or the potential of cosmic rays solar modulation. As a result, a long-term forecast of the cosmic ray flux was obtained based on the analysis of a dozen models of solar activity behavior for the next century. The analysis suggests that, contrary to earlier forecasts, the probability of a large solar minimum at the end of the 21st century is small. This is shown by the majority of long-term solar activity forecasts by various authors which was analyzed by us. An almost twofold increase in the level of solar activity is expected by the middle of the century and a subsequent transition to approximately current level at the end of the century. Reduced intensity of galactic cosmic rays is expected at the Earth’s orbit by mid-century.
Full Text

About the authors
P. G. Kobelev
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences
Author for correspondence.
Email: kobelev@izmiran.ru
ORCID iD: 0000-0002-9727-4395
Russian Federation, Moscow, Troitsk
L. А. Trefilova
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences
Email: kobelev@izmiran.ru
ORCID iD: 0000-0002-2563-5550
Russian Federation, Moscow, Troitsk
А. V. Belov
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences
Email: kobelev@izmiran.ru
ORCID iD: 0000-0002-1834-3285
Russian Federation, Moscow, Troitsk
R. Т. Gushchina
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences
Email: kobelev@izmiran.ru
ORCID iD: 0000-0002-5247-7404
Russian Federation, Moscow, Troitsk
V. G. Yanke
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences
Email: kobelev@izmiran.ru
ORCID iD: 0000-0001-7098-9094
Russian Federation, Moscow, Troitsk
References
- Белов А.В., Ерошенко Е.А., Янке В.Г., Оленева В.А., Абунина М.А., Абунин А.А. Метод глобальной съемки для мировой сети нейтронных мониторов // Геомагнетизм и аэрономия. Т. 58. № 3. C. 374–389. 2018. https://doi.org/10.7868/S0016794018030082
- Веретененко С.В., Огурцов М.Г. Исследование пространственно-временной структуры долгопериодных эффектов солнечной активности и вариаций космических лучей в циркуляции нижней атмосферы // Геомагнетизм и аэрономия. Т. 52. № 5. С. 626–638. 2012.
- Кудрявцев И.В., Юнгер X. Вариации прозрачности атмосферы под действием галактических космических лучей как возможная причина их влияния на формирование облачности // Геомагнетизм и аэрономия. Т. 51. № 5. С. 668–676. 2011.
- Лушников А.А., Загайнов В.А., Любовцева Ю.С., Гвишиани А.Д. Образование наноаэрозолей в тропосфере под действием космического излучения // Изв. РАН. Физика атмосферы и океана. Т. 50. № 2. С. 175–184. 2014. https://doi.org/10.7868/S0002351514020072
- Янке В.Г., Белов А.В., Гущина Р.Т., Кобелев П.Г., Трефилова Л.А. Об остаточной модуляции галактических космических лучей в гелиосфере // Космич. исслед. Т. 61. № 1. 2023. C. 43–51. https://doi.org/10.31857/S0023420622060115
- Янчуковский В.Л. Реакция атмосферы на средних широтах на спорадические вариации космических лучей // Солнечно-земная физика. Т. 10. № 4. С. 1–8. 2024. https://doi.org/10.12737/szf-101101101
- Abreu J.A., Beer J., Ferriz-Mas A. Past and future solar activity from cosmogenic radionuclides // In Astronomical Society of the Pacific Conference Series: Soho-23: Understanding a Peculiar Solar Minimum. V. 428. P. 287–295. 2010.
- Barnard L., Lockwood M., Hapgood M.A., Owens M.J., Davis C.J., Steinhilber F. Predicting space climate change // Geophys. Res. Lett. V. 38. L16103. 2011. https://doi.org/10.1029/2011GL048489
- Belov A., Eroshenko E., Yanke V., Oleneva V., Abunin A., Abunina M., Papaioannou A., Mavromichalaki E. The Global Survey Method applied to Ground Level Cosmic Ray Measurements // Solar Physics. V. 293. Article number 68. 2018. https://doi.org/10.1007/s11207-018-1277-6
- Bisschoff D., Potgieter M.S., Aslam O.P.M. New very local interstellar spectra for electrons, positrons, protons and light cosmic ray nuclei // The Astrophysical Journal. V. 878. № 1. Article number 59. 2019. https://doi.org/10.3847/1538-4357/ab1e4a
- Biswas A., Karak B.B., Usoskin I., Weisshaar E. Long-Term Modulation of Solar Cycles // Space Science Reviews. V. 219. Article number 19. 2023. https://doi.org/10.1007/s11214-023-00968-w
- Bonev B.P., Penev K.M., Sello S. Long-term solar variability and the solar cycle in the 21st century // The Astrophysical Journal. V. 605. № 1. L81–L84. 2004. https://doi.org/10.1086/420695
- Caballero-Lopez R.A., Moraal H. // Limitations of the force field equation to describe cosmic ray modulation. // JGRA. V. 109. Issue A1. A01101. 2004. https://doi.org/10.1029/2003JA010098
- Gleeson L.J., Axford W.I. Solar Modulation of Galactic Cosmic Rays // Astrophys. J. V. 154. P. 1011. 1968. https://doi.org/10.1086/149822
- Clilverd M.A., Clarke E., Ulich T., Rishbeth H., Jarvis M.J. Predicting Solar Cycle 24 and beyond // Space Weather. V. 4. S09005. 2006. https://doi.org/10.1029/2005SW000207
- Gray L.J., Beer J., Geller M., Haigh J.D., Lockwood M., Matthes K., Cubasch U., Fleitmann D., Harrison G., Hood L. et.al. Solar influences on climate // Reviews of Geophysics V. 48. Issue 4. RG4001. https://doi.org/10.1029/2009RG000282
- Gulev S.K., Thorne P.W. Climate change 2021: The physical science basis. // 6th AR IPCC. London: Cambridge University Press. P. 422. 2023. https://doi.org/10.1017/9781009157896.004
- Herrera V.M.V., Soon W., Legate D.R. Does Machine Learning reconstruct missing sunspots and forecast a new solar minimum? // Advances in Space Research. V. 68. Issue 3. P. 1485–1501. 2021. https://doi.org/10.1016/j.asr.2021.03.023
- Hiremath K., 2008. Prediction of solar cycle 24 and beyond // Astrophys. Space Sci. V. 314. P. 45–49. https://doi.org/10.1007/s10509-007-9728-9
- Karak B.B., Miesch M. “Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock–Leighton Solar Dynamo Model” // The Astrophysical Journal. V. 847. Article number 69. 2017. https://doi.org/10.3847/1538-4357/aa8636
- Kniveton D.R. Precipitation, cloud cover and Forbush decreases in galactic cosmic rays // J. Atmos. Solar Terr. Phys. V. 66. Issues 13–14. P. 1135–1142. 2004. https://doi.org/10.1016/j.jastp.2004.05.010
- Knudsen M.F., Riisager P., Jacobsen B.H., Muscheler R., Snowball I., Seidenkrantz M.S. Taking the pulse of the Sun during the Holocene by joint analysis of (14)C and (10) Be // Geophys. Res. Lett. V. 36. L16701. 2009. https://doi.org/10.1029/2009GL039439
- Lockwood M. Solar change and climate: An update in the light of the current exceptional solar minimum. // Proc. R. Soc. A. V. 466. Issue 2114. P. 303–329. 2010. https://doi.org/10.1098/rspa.2009.0519
- Lockwood M., Owens M.J., Barnard L., Davis C.J., and Steinhilber F. The persistence of solar activity indicators and the descent of the Sun into Maunder Minimum conditions // Geophys. Res. Lett. V. 38. Issue 22. L22105. 2011. https://doi.org/10.1029/2011GL049811
- Moraal H. Cosmic-ray modulation equations // Space Sci. Rev. V. 176. P. 299–319. 2013. https://doi.org/10.1007/s11214-011-9819-3
- Morner N.A. The approaching new grand solar minimum and little ice age climate conditions // Natural Science. // V. 7. P. 510–518. 2015. http://dx.doi.org/10.4236/ns.2015.711052
- Nasirpour M.H., Sharifi A., Ahmadi M. Revealing the relationship between solar activity and COVID-19 and forecasting of possible future viruses using multi-step autoregression (MSAR) // Environmental Science and Pollution Research V. 28. P. 38074–38084. 2021. https://doi.org/10.1007/s11356-021-13249-2
- Palle E., Butler C.J., O’Brien K. The possible connection between ionization in the atmosphere by cosmic rays and low level clouds // J. Atm. Solar-Terr. Phys. V. 66. P. 1779–1790. 2004. https://doi.org/10.1016/j.jastp.2004.07.041
- Poluianov S.V., Kovaltsov G.A., Mishev A.L., Usoskin I.G. Production of cosmogenic isotopes 7Be, 10Be, 14C, 22Na, and 36Cl in the atmosphere: Altitudinal profiles of yield functions // J. Geophys. Res. Atmos. V. 121. P. 8125‒8136. 2016. https://doi.org/10.1002/2016JD025034
- Rigozo N.R., Nordemann D.J.R., Echer E., Echer M.P.S., Silva H.E. Prediction of solar minimum and maximum epochs on the basis of spectral characteristics for the next millennium // Planetary and Space Science. V. 58. P. 1971–1976. 2010. https://doi.org/10.1016/j.pss.2010.09.020
- Salvador R.J. A mathematical model of the sunspot cycle for the past 1000 yr // Pattern Recogn. Phys. V. 1. P. 117–122. 2013. https://doi.org/10.5194/prp-1-117-2013
- Steinhilber F., Abreu J.A., Beer J. Solar modulation during the Holocene // Astrophys. Space Sci. Trans. V. 4. P. 1–6. 2008. https://doi.org/10.5194/astra-4-1-2008
- Steinhilber F., Beer J. Prediction of solar activity for the next 500 years // J. Geophys. Res. Space Physics. V. 118. P. 1861–1867. 2013. https://doi.org/10.1002/jgra.50210
- Stuiver M., Reimer P.J., Braziunas T. High-precision radiocarbon age calibration for terrestrial and marine samples // Radiocarbon, V. 40. № 3. P. 1127‒1151. 1998. https://doi.org/10.1017/S0033822200019172
- Tinsley B.A., Zhou L. Initial results of a global circuit model with stratospheric and tropospheric aerosols // J. Geophys. Res. V. 111. D16205. 2006. https://doi.org/10.1029/2005JD006988
- Tinsley B.A. A working hypothesis for connections between electrically-induced changes in cloud microphysics and storm vorticity, with possible effects on circulation // Adv. Space Res. 2012. V. 50. Issue 6. P. 791–805. https://doi.org/10.1016/j.asr.2012.04.008
- Usoskin I.G. A history of solar activity over millennia // Living Rev. Sol. Phys. V. 14. Article number 3. 2017. https://doi.org/10.1007/s41116-017-0006-9
- Vinos J. Climate of the Past, Present and Future. A Scientific Debate // Madrid: Critical Science Press. 279 p. 2022. https://judithcurry.com/wp-content/uploads/2022/09/Vinos-CPPF2022.pdf
- Vos E.E., Potgieter M.S. New Modeling of Galactic Proton Modulation during the Minimum of Solar Cycle 23/24 // Astrophys. J. V. 815. № 2. Article number 119. 2015. 10.1088/0004-637X/815/2/119' target='_blank'>https://doi.org/doi: 10.1088/0004-637X/815/2/119
- Xepapadeas A. Uncertainty and climate change: The IPCC approach vs decision theory // Journal of Behavioral and Experimental Economics. V. 109. 102188. 2024. https://doi.org/10.1016/j.socec.2024.102188
- Yanke V.G., Belov A.V., Gushchina R.T., Kobelev P.G., Trefilova L.A. “Forecast of Modulation of Cosmic Rays with Hardness of 10 GV in the 25th Solar Activity Cycle” // Geomagnetism and Aeronomy. V. 64. No. 2. P. 201–210. 2024. https://doi.org/10.1134/S0016793223601072
Supplementary files
