Spectral and spatial distribution of accelerated protons on 11 May 2024
- Autores: Olemskoy S.V.1, Kovalev I.I.1, Kravtsova M.V.1, Sdobnov V.E.1
-
Afiliações:
- Institute of Solar-Terrestrial Physics of Siberian Branch of the Russian Academy of Sciences (ISTP SB RAS)
- Edição: Volume 65, Nº 5 (2025)
- Páginas: 582-589
- Seção: Articles
- URL: https://journal-vniispk.ru/0016-7940/article/view/352717
- DOI: https://doi.org/10.7868/S3034502225050025
- ID: 352717
Citar
Resumo
The ground-level enhancement (GLE) of the cosmic ray intensity is the result of a short-term increase in the intensity of secondary cosmic ray particles recorded by ground-based detectors. The study of GLE provides us with information about the acceleration mechanisms and particle propagation in the heliosphere. We investigated GLE74 (11 May 2024). It was the second GLE in solar cycle 25 caused by a solar flare of class 5.8 and a fast coronal mass ejection. The event was observed against the background of the Forbush effect recovery. We analyzed cosmic ray data from the worldwide network of neutron monitors processed by the global spectrographic survey method. We also used the GOES-16 data. Within the model of cosmic ray modulation by regular electromagnetic fields of the heliosphere, we determined the differential rigidity spectra of accelerated protons and their spatial distribution. The limiting rigidity of accelerated particles was estimated to be ~5–6 GV. We briefly analyzed the cosmic ray spectra and anisotropy data obtained during the GLE74 event in comparison with similar events studied previously.
Palavras-chave
Sobre autores
S. Olemskoy
Institute of Solar-Terrestrial Physics of Siberian Branch of the Russian Academy of Sciences (ISTP SB RAS)
Autor responsável pela correspondência
Email: osv@iszf.irk.ru
Irkutsk, Russia
I. Kovalev
Institute of Solar-Terrestrial Physics of Siberian Branch of the Russian Academy of Sciences (ISTP SB RAS)
Email: ivankov@iszf.irk.ru
Irkutsk, Russia
M. Kravtsova
Institute of Solar-Terrestrial Physics of Siberian Branch of the Russian Academy of Sciences (ISTP SB RAS)
Email: rina@iszf.irk.ru
Irkutsk, Russia
V. Sdobnov
Institute of Solar-Terrestrial Physics of Siberian Branch of the Russian Academy of Sciences (ISTP SB RAS)
Email: sdobnov@iszf.irk.ru
Irkutsk, Russia
Bibliografia
- Белов А.В., Ерошенко E.A., Крякунова О.Н., Курт В.Г., Янке В.Г. Наземные возрастания солнечных космических лучей в трех последних циклах солнечной активности // Геомагнетизм и аэрономия. Т. 50. № 1. С. 23–36. 2010.
- Бережко Е.Г., Танеев С.Н. Ускорение солнечных космических лучей ударными волнами // Письма в АЖ. Т. 39. № 6. С. 443–465. 2013. https://doi.org/10.7868/s0320010813060016
- Дворников В.М., Кравцова М.В., Сдобнов В.Е. Диагностика электромагнитных характеристик межпланетной среды по эффектам в космических лучах // Геомагнетизм и аэрономия. Т. 53. № 4. С. 457–468. 2013. https://doi.org/10.7868/S001679401304007X
- Кравцова М.В., Сдобнов В.Е. Наземное возрастание интенсивности космических лучей на фазе спада 24 солнечного цикла: спектры и анизотропия // Известия РАН. Сер. физ. Т. 85. №. 8. С. 1194–1197. 2021. https://doi.org/10.31857/S0367676521080147
- Логачёв Ю.И., Базилевская Г.А., Власова Н.А. и др. Каталог солнечных протонных событий 24-го цикла солнечной активности (2009–2019 гг.). М.: МЦД, 2022.
- Мирошниченко Л.И. Космические лучи в межпланетном пространстве. Москва: Наука, 160 с. 1973.
- Российская национальная наземная сеть станций космических лучей. 2025. https://ckp-rf.ru/catalog/usu/433536/
- Центр коллективного пользования “Ангара”. 2025. http://ckp-rf.ru/ckp/
- Cutoff2050 Geomagentic Calculator. 2025. https://tools.izmiran.ru/cutoff/
- Dvornikov V.M., Sdobnov V.E. Time variations of the cosmic ray distribution function during a solar event of September 29, 1989 // J. Geophys. Res. V. 102. A11. P. 24209–24219. 1997.
- GLE database. 2025. https://gle.oulu.fi
- Hayakawa H., Ebihara Y., Mishev A., et al. The Solar and Geomagnetic Storms in May 2024: A Flash Data Report // Astrophys. J. V. 979. № 1. P. 1–26. 2025. https://doi.org/10.3847/1538-4357/ad9335
- Kovalev I.I., Olemskoy S.V., Sdobnov V.E. A proposal to extend the spectrographic global survey method // J. Atmos. Sol.-Terr. Phys. V. 235. P. 105887–105894. 2022. https://doi.org/10.1016/j.jastp.2022.105887
- Kovalev I.I., Kravtsova M.V., Olemskoy S.V., Sdobnov V.E. 2021 Oct 28 GLE73. First Event in Solar Activity Cycle 25: Spectra and Anisotropy // Bull. Russ. Acad. Sci.: Phys. (in press). 2025.
- Miroshnichenko L.I. Solar Cosmic Rays: Fundamentals and Applications. Springer, 521 p. 2014.
- Mishev A., Larsen N., Asvestari E. et al. Anisotropic Forbush decrease of 24 March 2024: First look // Adv. Space Res. V. 74. P. 4160–4172. 2024. https://doi.org/10.1016/j.asr.2024.08.027
- NASA/Goddard Space Flight Center. 2025. https://omniweb.gsfc.nasa.gov/ow.html
- NOAA National Centers for Environmental Information. 2025. https://data.ngdc.noaa.gov/
- NMDB: the Neutron Monitor Database. 2025. https://www.nmdb.eu/
- Oh S.Y., Yi Y., Bieber J.W., Evenson P., and Kim Y.K. Characteristics of solar proton events associated with ground level enhancements // J. Geophys. Res. V. 115. A10107. P. 1–14. 2010. https://doi.org/10.1029/2009JA015171
- Poluianov S.V., Usoskin I.G., Mishev A.L., et al. GLE and sub-GLE redefinition in the light of high-altitude polar neutron monitors // Solar Phys. V. 292. № 11. P. 1–7. 2017. https://doi.org/10.1007/s11207-017-1202-4
- SOHO LASCO CME CATALOG. 2025. https://cdaw.gsfc.nasa.gov/
- Solar Monitor. 2025. http://www.solarmonitor.org/
- Space Weather Database of Notifications, Knowledge, Information (DONKI). 2025. https://kauai.ccmc.gsfc.nasa.gov/DONKI/
- Spogli L., Alberti T., Bagiacchi P., et al. The effects of the May 2024 Mother’s Day superstorm over the Mediterranean sector: from data to public communication // Ann Geophys. V. 67. № 2. PA218. P. 1–31. 2024. https://doi.org/1044.01/ag-9117
Arquivos suplementares

