Pre- and post-midnight equatorial plasma bubbles

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The development of equatorial plasma bubbles was considered in the latitude-altitude and local time dynamics. The obtained pattern was used to study the particular features of the pre- and post-midnight equatorial plasma bubbles. For this purpose, а detailed comparative analysis of the histograms of latitudinal and local-time variations in the occurrence probability of bubbles at altitudes was carried out. Data from the AE-E (~350−475 km), ROCSAT-1 (~600 km) and ISS-b (~972−1220 km) satellites which different orbital altitudes were included. Observations were carried out during the years of the increasing and maximum solar activity. It was found that the probability of occurrence of the equatorial plasma bubbles in the equatorial and low-latitude regions at the altitudes of ~350−1200 km is maximum before the midnight. On the other hand, the maximum occurrence probability of bubbles in the mid-latitude region at the altitudes of ~600−1200 km was recorded after midnight. It was concluded that the dominance of post-midnight equatorial plasma bubbles in the mid-latitude region is associated with the dynamics of their rise and increase in geometric size.

Авторлар туралы

L. Sidorova

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation

Хат алмасуға жауапты Автор.
Email: lsid@izmiran.ru
Moscow, Troitsk, Russia

Әдебиет тізімі

  1. Сидорова Л.Н., Филиппов С.В. Долготная статистика плазменных “пузырей”, видимых на высотах верхней ионосферы в концентрации Не+ // Геомагнетизм и аэрономия. Т. 53. № 1. С. 64−77. 2013. https://doi.org/10.7868/S0016794012060107
  2. Сидорова Л.Н., Филиппов С.В. Экваториальные плазменные “пузыри”: Влияние термосферных ветров, модулированных приливной волной DE3 // Геомагнетизм и аэрономия. Т. 58. № 2. С. 225–233. 2018. https://doi.org/10.7868/S0016794018020086
  3. Сидорова Л.Н. Экваториальные плазменные пузыри: Зависимость вероятности наблюдения от местного времени // Геомагнетизм и аэрономия. Т. 60. № 5. С. 557–565. 2020. https://doi.org/10.31857/S0016794020050144
  4. Сидорова Л.Н. Экваториальные плазменные пузыри: Изменчивость широтного распределения с высотой // Геомагнетизм и аэрономия. Т. 61. № 4. C. 445–456. 2021. https://doi.org/10.31857/S0016794021040167
  5. Abdu M.A., de Medeiros R.T., Sobral J.H.A., Bittencourt J.A. Spread F plasma bubble vertical rise velocities determined from spaced ionosonde observations // J. Geophys. Res. – Space. V. 88. № 11. P. 9197–9204. 1983. https://doi.org/10.1029/JA088iA11p09197
  6. Bowman G.G. A relationship between polar magnetic substorms, ionospheric height rises and the occurrence of spread F // J. Atmos. Terr. Phys. V. 40. № 6. P. 713–722. 1978. https://doi.org/10.1016/0021-9169(78)90129-0
  7. Burke W.J. Plasma bubbles near the dawn terminator in the topside ionosphere // Planet. Space Sci. V. 27. № 9. P. 1187−1193. 1979. https://doi.org/10.1016/0032-0633(79)90138-7
  8. Burke W.J., Donatelli D.E., Sagalyn R.C., Kelley M.C. Low density regions observed at high altitudes and their connection with equatorial spread F // Planet. Space. Sci. V. 27. № 5. P. 593−601. 1979. https://doi.org/10.1016/0032-0633(79)90157-0
  9. Comberiate J., Paxton L.J. Coordinated UV imaging of equatorial plasma bubbles using TIMED/GUVI and DMSP/SSUSI // Space Weather. V. 8. № 10. ID S10002. 2010. https://doi.org/10.1029/2009SW000546
  10. Dao E., Kelley M.C., Roddy P., Retterer J., de La Beaujardière O., Su Y.-J. Longitudinal and seasonal dependence of nighttime equatorial plasma density irregularities during solar minimum detected on the C/NOFS satellite // Geophys. Res. Lett. V. 38. № 10. ID L10104. 2011. https://doi.org/10.1029/2011GL047046
  11. Fejer B.G., Scherliess L., de Paula E.R. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F // J. Geophys. Res. – Space. V. 104. № 9. P. 19859–19869. 1999. https://doi.org/10.1029/1999JA900271
  12. Hanson W.B., Coley W.R., Heelis R.A., Urquhart A.L. Fast equatorial bubbles // J. Geophys. Res. – Space. V. 102. № 2. P. 2039−2045. 1997. https://doi.org/10.1029/96JA03376
  13. Huba J.D., Joyce G., Krall J. Three-dimensional equatorial spread F modeling // Geophys. Res. Lett. V. 35. № 10. ID L10102. 2008. https://doi.org/10.1029/2008GL033509
  14. Kil H., Heelis R.A. Global distribution of density irregularities in the equatorial ionosphere // J. Geophys. Res. – Space. V. 103. № 1. P. 407−417. 1998. https://doi.org/10.1029/97JA02698
  15. Li G., Ning B., Liu L., Wan W., Liu J.Y. Effect of magnetic activity on plasma bubbles over equatorial and low-latitude regions in East Asia // Ann. Geophys. V. 27. № 1. P. 303–312. 2009. https://doi.org/10.5194/angeo-27-303-2009
  16. McClure J.P., Hanson W.B., Hoffman J.F. Plasma bubbles and irregularities in the equatorial ionosphere // J. Geophys. Res. V. 82. № 19. P. 2650−2656. 1977. https://doi.org/10.1029/JA082i019p02650
  17. Ott E. Theory of Rayleigh−Taylor bubbles in the equatorial ionosphere // J. Geophys. Res. – Space. V. 83. № 5. P. 2066−2070. 1978. https://doi.org/10.1029/JA083iA05p02066
  18. Ossakov S.L., Chaturvedi P.K. Morphological studies of rising equatorial spread F bubbles // J. Geophys. Res. – Space. V. 83. № 5. P. 2085−2090. 1978. https://doi.org/10.1029/JA083iA05p02085
  19. Palmroth M., Laakso H., Fejer B.G., Pfaff R.F. Jr. DE 2 observations of morningside and eveningside plasma density depletions in the equatorial ionosphere // J. Geophys. Res. – Space. V. 105. № 8. P. 18429–18442. 2000. https://doi.org/10.1029/1999JA005090
  20. RRL. Summary plots of ionospheric parameters obtained from Ionosphere Sounding Satellite-b. Tokyo: Radio Research Laboratories. Ministry of Posts and Telecommunications. V. 1−3. 1983.
  21. RRL. Summary plots of ionospheric parameters obtained from Ionosphere Sounding Satellite-b. Tokyo: Radio Research Laboratories. Ministry of Posts and Telecommunications. Special Report. V. 4. 1985.
  22. Sidorova L.N., Filippov S.V. Topside ionosphere He+ density depletions: seasonal/longitudinal occurrence probability // J. Atmos. Sol.-Terr. Phy. V. 86. P. 83–91. 2012. https://doi.org/10.1016/j.jastp.2012.06.013
  23. Sidorova L.N., Filippov S.V. Plasma bubbles in the topside ionosphere: estimations of the survival possibilities // J. Atmos. Sol.-Terr. Phy. V. 119. P. 35–41. 2014. 10.1016/j.jastp.2014.06.013' target='_blank'>https://doi: 10.1016/j.jastp.2014.06.013
  24. Sidorova L.N., Filippov S.V. Four-peak longitudinal distribution of the equatorial plasma bubbles observed in the topside ionosphere: Possible troposphere tide influence // Adv. Space Res. V. 61. № 6. P. 1412–1424. 2018. https://doi.org/10.1016/j.asr.2017.12.035
  25. Singh S., Bamgboye D.K., McClure J.P., Johnson F.S. Morphology of equatorial plasma bubbles // J. Geophys. Res. – Space. V. 102. № 9. P. 20019−20029. 1997. https://doi.org/10.1029/97JA01724
  26. Smith J., Heelis R.A. Equatorial plasma bubbles: Variations of occurrence and spatial scale in local time, longitude, season, and solar activity // J. Geophys. Res. – Space. V. 122. № 5. P. 5743−5755. 2017. https://doi: 10.1002/2017JA024128
  27. Stolle С., Lühr H., Rother M., Balasis G. Magnetic signatures of equatorial spread F as observed by the CHAMP satellite // J. Geophys. Res. – Space. V. 111. № 2. ID A02304. 2006. https://doi.org/10.1029/2005JA011184
  28. Su S.-Y., Liu C.H., Ho H.H., Chao C.K. Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions // J. Geophys. Res. – Space. V. 111. № 6. ID A06305. 2006. https://doi: 10.1029/2005JA011330
  29. Su Y.-J., Retterer J.M., Pfaff R.F., Roddy P.A., de La Beaujardière O., Ballenthin J.O. Assimilative modeling of observed postmidnight equatorial plasma depletions in June 2008 // J. Geophys. Res. – Space. V. 116. № 9. ID A09318. 2011. https://doi.org/10.1029/2011JA016772
  30. Woodman R.F., La Hoz C. Radar observations of F-region equatorial irregularities // J. Geophys. Res. V. 81. № 31. P. 5447−5466. 1976. https://doi.org/10.1029/JA081i031p05447
  31. Yizengaw E., Retterer J., Pacheco E.E., Roddy P., Groves K., Caton R., Baki P. Postmidnight bubbles and scintillations in the quiet-time June solstice // Geophys. Res. Let. V. 40. № 21. P. 5592−5597. 2013. 10.1002/2013GL058307' target='_blank'>https://doi: 10.1002/2013GL058307

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».